Properties of Triangles

If $a^2$, $b^2$ and $c^2$ are in $A.P$, prove that $\cot A$, $\cot B$ and $\cot C$ are also in $A.P$.


Given: $\;$ $a^2, \; b^2, \; c^2$ are in $A.P$

$\implies$ $2 b^2 = a^2 + c^2$

i.e. $\;$ $b^2 = a^2 +c^2 - b^2$ $\;\;\; \cdots \; (1)$

In any $\triangle ABC$,

$\cot A = \dfrac{b^2 + c^2 - a^2}{4 \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}}$, $\;$ $\cot B = \dfrac{c^2 + a^2 - b^2}{4 \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}}$, $\;$ $\cot C = \dfrac{a^2 + b^2 - c^2}{4 \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}}$

Now,

$\begin{aligned} \cot A + \cot C & = \dfrac{b^2 + c^2 - a^2}{4 \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}} + \dfrac{a^2 + b^2 - c^2}{4 \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}} \\\\ & = \dfrac{2 b^2}{4 \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}} \\\\ & = \dfrac{b^2}{2 \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}} \\\\ & = \dfrac{a^2 + c^2 - b^2}{2 \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}} \;\; \left[\text{in view of equation (1)}\right] \\\\ & = 2 \times \left(\dfrac{a^2 + c^2 - b^2}{4 \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}}\right) \\\\ & = 2 \cot B \end{aligned}$

i.e. $\;$ $\cot A + \cot C = 2 \cot B$

$\implies$ $\cot A, \; \cot B, \; \cot C$ are in $A.P$

Hence proved.