Properties of Triangles

In $\triangle ABC$, prove that $2 a c \sin \dfrac{1}{2} \left(A - B + C\right) = c^2 + a^2 - b^2$


In $\triangle ABC$, $\;$ $A + B + C = \pi$ $\implies$ $A + C = \pi - B$

$\begin{aligned} LHS & = 2 a c \sin \left(\dfrac{A - B + C}{2}\right) \\\\ & = 2 a c \sin \left(\dfrac{\pi - B - B}{2}\right) \\\\ & = 2 a c \sin \left(\dfrac{\pi}{2} - B\right) \\\\ & = 2 a c \cos B \\\\ & = 2 a c \left(\dfrac{c^2 + a^2 - b^2}{2 c a}\right) \;\; \left[\text{by cosine rule}\right] \\\\ & = c^2 + a^2 - b^2 = RHS \end{aligned}$

Hence proved.