Properties of Triangles

If $a = 2$, $b = 1 + \sqrt{3}$ and $C = 60^\circ$, solve the triangle.


Given: $\;$ $a = 2$, $\;$ $b = 1 + \sqrt{3}$, $\;$ $C = 60^\circ$

In $\triangle ABC$, by cosine rule,

$\cos C = \dfrac{a^2 + b^2 - c^2}{2 a b}$

$\begin{aligned} \implies c^2 & = a^2 + b^2 - 2 a b \cos C \\\\ & = \left(2\right)^2 + \left(1 + \sqrt{3}\right)^2 - 2 \times 2 \times \left(1 + \sqrt{3}\right) \cos 60^\circ \\\\ & = 4 + 1 + 3 + 2 \sqrt{3} - 2 - 2 \sqrt{3} \end{aligned}$

i.e. $\;$ $c^2 = 6$ $\implies$ $c = \sqrt{6}$

By sine rule,

$\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C}$

$\therefore \;$ We have, $\;$ $\dfrac{2}{\sin A} = \dfrac{\sqrt{6}}{\sin 60^\circ}$

i.e. $\;$ $\sin A = \dfrac{2 \sin 60^\circ}{\sqrt{6}} = 2 \times \dfrac{\sqrt{3}}{2} \times \dfrac{1}{\sqrt{6}} = \dfrac{1}{\sqrt{2}}$

$\implies$ $A = \sin^{-1} \left(\dfrac{1}{\sqrt{2}}\right) = 45^\circ$

and $\;$ $\dfrac{1 + \sqrt{3}}{\sin B} = \dfrac{\sqrt{6}}{\sin 60^\circ}$

i.e. $\;$ $\sin B = \dfrac{\left(1 + \sqrt{3}\right) \sin 60^\circ}{\sqrt{6}} = \dfrac{\left(1 + \sqrt{3}\right) \sqrt{3}}{2 \sqrt{6}} = \dfrac{1 + \sqrt{3}}{2 \sqrt{2}}$

$\implies$ $B = \sin^{-1} \left(\dfrac{1 + \sqrt{3}}{2 \sqrt{2}}\right) = 75^\circ$

$\therefore \;$ $c = \sqrt{6}$, $\;$ $A = 45^\circ$, $\;$ $B = 75^\circ$