Properties of Triangles

In $\triangle ABC$, if $\;$ $\dfrac{b + c}{11} = \dfrac{c + a}{12} = \dfrac{a + b}{13}$, then show that $\;$ $\dfrac{\cos A}{7} = \dfrac{\cos B}{19} = \dfrac{\cos C}{25}$


Let $\;$ $\dfrac{b + c}{11} = \dfrac{c + a}{12} = \dfrac{a + b}{13} = k \; (\text{say})$

Then, $b + c = 11 k$ $\;\;\; \cdots \; (1a)$, $\;$ $c + a = 12 k$ $\;\;\; \cdots \; (1b)$, $\;$ $a + b = 13 k$ $\;\;\; \cdots \; (1c)$

Subtracting equations $(1b)$ and $(1c)$ we have,

$b - c = k$ $\;\;\; \cdots (2)$

Adding equations $(1a)$ and $(2)$ we have,

$2 b = 12 k$ $\implies$ $b = 6 k$

Substituting the value of $b$ in equation $(1a)$ we have,

$c = 11 k - b = 11 k - 6 k = 5 k$

Substituting the value of $c$ in equation $(1b)$ we have,

$a = 12 k - c = 12 k - 5 k = 7 k$

By cosine rule,

$\cos A = \dfrac{b^2 + c^2 - a^2}{2 b c}$, $\;$ $\cos B = \dfrac{c^2 + a^2 - b^2}{2 c a}$, $\;$ $\cos C = \dfrac{a^2 + b^2 - c^2}{2 a b}$

$\begin{aligned} \therefore \; \cos A & = \dfrac{\left(6 k\right)^2 + \left(5 k\right)^2 - \left(7 k\right)^2}{2 \times 6 k \times 5 k} \\\\ & = \dfrac{36 k^2 + 25 k^2 - 49 k^2}{60 k^2} \\\\ & = \dfrac{1}{5} \end{aligned}$

$\begin{aligned} \cos B & = \dfrac{\left(5 k\right)^2 + \left(7 k\right)^2 - \left(6 k\right)^2}{2 \times 5 k \times 7 k} \\\\ & = \dfrac{25 k^2 + 49 k^2 - 36 k^2}{70 k^2} \\\\ & = \dfrac{19}{35} \end{aligned}$

$\begin{aligned} \cos C & = \dfrac{\left(7 k\right)^2 + \left(6 k\right)^2 - \left(5 k\right)^2}{2 \times 7 k \times 6 k} \\\\ & = \dfrac{49 k^2 + 36 k^2 - 25 k^2}{84 k^2} \\\\ & = \dfrac{5}{7} \end{aligned}$

Now,

$\begin{aligned} \cos A : \cos B : \cos C & = \dfrac{1}{5} : \dfrac{19}{35} : \dfrac{5}{7} \\\\ & = \dfrac{7}{35} : \dfrac{19}{35} : \dfrac{25}{35} \end{aligned}$

$\implies$ $\dfrac{\cos A}{7} = \dfrac{\cos B}{19} = \dfrac{\cos C}{25}$

Hence proved.