Properties of Triangles

To get the distance of a point $A$ from a point $B$, a line $BC$ and the angles $ABC$ and $BCA$ are measured and found to be $287 \; cm$ and $55^\circ 32'10''$ and $51^\circ 8' 20''$ respectively. Find the distance $AB$.


Given: $\;$ $\angle ABC = B = 55^\circ 32' 10''$, $\;$ $\angle BCA = C = 51^\circ 8' 20''$, $\;$ $BC = 287 \; cm$

In $\triangle ABC$, $\;$ $A + B + C = 180^\circ$

$\begin{aligned} \therefore \; A & = 180^\circ - \left(B + C\right) \\\\ & = 180^\circ - \left(55^\circ 32' 10'' + 51^\circ 8' 20''\right) \\\\ & = 73^\circ 19' 30'' \end{aligned}$

In $\triangle ABC$, by sine rule, $\;$ $\dfrac{AB}{\sin C} = \dfrac{BC}{\sin A}$

$\therefore \;$ $AB = \dfrac{BC \; \sin C}{\sin A}$

$\begin{aligned} i.e. \; AB & = \dfrac{287 \times \sin \left(51^\circ 8' 20''\right)}{\sin \left(73^\circ 19' 30''\right)} \\\\ & = \dfrac{287 \times 0.7787}{0.9579} \\\\ & = 233.31 \; cm \end{aligned}$