Properties of Triangles

The perpendicular $AD$ to the base of a $\triangle ABC$ divides it into segments such that $BD$, $CD$ and $AD$ are in the ratio of $2$, $3$ and $6$. Prove that the vertical angle of the triangle is $45^\circ$.



Let $ABC$ be the given triangle with base $BC$.

$AD$ is the perpendicular to the base of the triangle.

Given: $\;$ $BD : CD : AD = 2 : 3 : 6$

$\therefore \;$ Let $\;$ $BD = 2 k$, $\;$ $CD = 3 k$, $\;$ $AD = 6 k$ $\;$ where $k$ is the constant of proportionality

To prove that: $\;$ In $\triangle ABC$, $\;$ $\angle A = 45^\circ$

In $\triangle ACD$,

$\begin{aligned} AC & = \sqrt{CD^2 + AD^2} \\\\ & = \sqrt{\left(3 k\right)^2 + \left(6 k\right)^2} \\\\ & = \sqrt{9 k^2 + 36 k^2} \\\\ & = 3 k \sqrt{5} \end{aligned}$

Applying sine rule to $\triangle ACD$, we have

$\dfrac{CD}{\sin \left(\angle DAC\right)} = \dfrac{CA}{\sin \left(\angle CDA\right)}$

i.e. $\;$ $\dfrac{3 k}{\sin \left(\angle DAC\right)} = \dfrac{3 k \sqrt{5}}{\sin 90^{\circ}}$

i.e. $\;$ $\sin \left(\angle DAC\right) = \dfrac{1}{\sqrt{5}}$

$\implies$ $\angle DAC = \sin^{-1} \left(\dfrac{1}{\sqrt{5}}\right)$ $\;\;\; \cdots \; (1)$

In $\triangle ADB$,

$\begin{aligned} AB & = \sqrt{DB^2 + AD^2} \\\\ & = \sqrt{\left(2 k\right)^2 + \left(6 k\right)^2} \\\\ & = \sqrt{4 k^2 + 36 k^2} \\\\ & = 2 k \sqrt{10} \end{aligned}$

Applying sine rule to $\triangle ADB$, we have

$\dfrac{DB}{\sin \left(\angle DAB\right)} = \dfrac{AB}{\sin \left(\angle ADB\right)}$

i.e. $\;$ $\dfrac{2 k}{\sin \left(\angle DAB\right)} = \dfrac{2 k \sqrt{10}}{\sin 90^{\circ}}$

i.e. $\;$ $\sin \left(\angle DAB\right) = \dfrac{1}{\sqrt{10}}$

$\implies$ $\angle DAB = \sin^{-1} \left(\dfrac{1}{\sqrt{10}}\right)$ $\;\;\; \cdots \; (2)$

Now, in $\triangle ABC$,

$\begin{aligned} \angle A & = \angle DAC + \angle DAB \\\\ & = \sin^{-1} \left(\dfrac{1}{\sqrt{5}}\right) + \sin^{-1} \left(\dfrac{1}{\sqrt{10}}\right) \;\; \left[\text{from equations (1) and (2)}\right] \\\\ & \left[\text{Note: } \sin^{-1} x + \sin^{-1} y = \sin^{-1} \left(x \sqrt{1 - y^2} + y \sqrt{1 - x^2}\right)\right] \\\\ & = \sin^{-1} \left(\dfrac{1}{\sqrt{5}} \times \sqrt{1 - \dfrac{1}{10}} + \dfrac{1}{\sqrt{10}} \times \sqrt{1 - \dfrac{1}{5}}\right) \\\\ & = \sin^{-1} \left(\dfrac{1}{\sqrt{5}} \times \dfrac{3}{\sqrt{10}} + \dfrac{1}{\sqrt{10}} \times \dfrac{2}{\sqrt{5}}\right) \\\\ & = \sin^{-1} \left(\dfrac{5}{5 \sqrt{2}}\right) \\\\ & = \sin^{-1} \left(\dfrac{1}{\sqrt{2}}\right) \end{aligned}$

$\implies$ $\angle A = 45^{\circ}$

Hence proved.