Properties of Triangles

In $\triangle ABC$, prove that $\left(\dfrac{b^2 - c^2}{a^2}\right) \sin 2A + \left(\dfrac{c^2 - a^2}{b^2}\right) \sin 2B + \left(\dfrac{a^2 - b^2}{c^2}\right) \sin 2 C = 0$


By sine rule, $\;$ $\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R$ $\;$ where $R$ is the circumradius of $\triangle ABC$

$\implies$ $\sin A = \dfrac{a}{2 R}$, $\;$ $\sin B = \dfrac{b}{2 R}$, $\;$ $\sin C = \dfrac{c}{2 R}$

By cosine rule,

$\cos A = \dfrac{b^2 + c^2 - a^2}{2 b c}$, $\;$ $\cos B = \dfrac{c^2 + a^2 - b^2}{2 c a}$, $\;$ $\cos C = \dfrac{a^2 + b^2 - c^2}{2 a b}$

Now,

$\begin{aligned} \left(\dfrac{b^2 - c^2}{a^2}\right) \sin 2 A & = \left(\dfrac{b^2 - c^2}{a^2}\right) \times 2 \sin A \cos A \\\\ & = \left(\dfrac{b^2 - c^2}{a^2}\right) \times 2 \times \dfrac{a}{2 R} \times \left(\dfrac{b^2 + c^2 - a^2}{2 b c}\right) \\ & \hspace{3cm} \left[\text{by sine and cosine rules}\right] \\\\ & = \dfrac{\left(b^2 - c^2\right) \left(b^2 + c^2 - a^2\right)}{2 R a b c} \\\\ & = \dfrac{b^4 + b^2 c^2 - b^2 a^2 - b^2 c^2 - c^4 + a^2 c^2}{2 R a b c} \\\\ & = \dfrac{b^4 - b^2 a^2 - c^4 + a^2 c^2}{2 R a b c} \;\;\; \cdots \; (1a) \end{aligned}$

Similarly,

$\begin{aligned} \left(\dfrac{c^2 - a^2}{b^2}\right) \sin 2 B & = \left(\dfrac{c^2 - a^2}{b^2}\right) \times 2 \sin B \cos B \\\\ & = \dfrac{c^4 - b^2 c^2 -a^4 + a^2 b^2}{2 R a b c} \;\;\; \cdots \; (1b) \end{aligned}$

$\begin{aligned} \left(\dfrac{a^2 - b^2}{c^2}\right) \sin 2 C & = \left(\dfrac{a^2 - b^2}{c^2}\right) \times 2 \sin C \cos C \\\\ & = \dfrac{a^4 - a^2 c^2 - b^4 + b^2 c^2}{2 R a b c} \;\;\; \cdots \; (1c) \end{aligned}$

Adding equations $(1a)$, $(1b)$ and $(1c)$ we have,

$\begin{aligned} LHS & = \left(\dfrac{b^2 - c^2}{a^2}\right) \sin 2A + \left(\dfrac{c^2 - a^2}{b^2}\right) \sin 2B + \left(\dfrac{a^2 - b^2}{c^2}\right) \sin 2 C \\\\ & = \dfrac{1}{2 R a b c} \left(b^4 - a^2 b^2 - c^4 + a^2 c^2 \right. \\\\ & \left. \hspace{2.5cm} + c^4 - b^2 c^2 - a^4 + a^2 b^2 \right. \\\\ & \left. \hspace{3.5cm} + a^4 - a^2 c^2 - b^4 + b^2 c^2 \right) \\\\ & = 0 = RHS \end{aligned}$

Hence proved.