Properties of Triangles

In $\triangle ABC$, $\;$ prove that $\;$ $\left(a^2 - b^2 + c^2\right) \tan B = \left(a^2 + b^2 - c^2\right) \tan C$


By sine rule, $\;$ $\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R$ $\;$ where $R$ is the circumradius of $\triangle ABC$

By cosine rule,

$\cos A = \dfrac{b^2 + c^2 - a^2}{2 b c}$ $\implies$ $b^2 + c^2 - a^2 = 2 b c \cos A$

$\cos B = \dfrac{c^2 + a^2 - b^2}{2 c a}$ $\implies$ $c^2 + a^2 - b^2 = 2 c a \cos B$

$\cos C = \dfrac{a^2 + b^2 - c^2}{2 a b}$ $\implies$ $a^2 + b^2 - c^2 = 2 a b \cos C$

Now,

$\begin{aligned} \left(a^2 - b^2 + c^2\right) \tan B & = 2 c a \cos B \tan B \\\\ & = 2 c a \sin B \\\\ & = \dfrac{a b c}{R} \;\;\; \cdots \; (1a) \end{aligned}$

$\begin{aligned} \left(a^2 + b^2 - c^2\right) \tan C & = 2 a b \cos C \tan C \\\\ & = 2 a b \sin C \\\\ & = \dfrac{a b c}{R} \;\;\; \cdots \; (1b) \end{aligned}$

$\therefore \;$ In view of equations $(1a)$ and $(1b)$ we have,

$\left(a^2 - b^2 + c^2\right) \tan B = \left(a^2 + b^2 - c^2\right) \tan C$

Hence proved.