Properties of Triangles

In any $\triangle ABC$, prove that the area of the triangle $\Delta = \dfrac{b^2 + c^2 - a^2}{4 \cot A}$


$\begin{aligned} \text{Area of } \triangle ABC & = \dfrac{1}{2} b c \sin A \\\\ & = \dfrac{1}{2} b c \times \left(\dfrac{\sin A}{\cos A}\right) \times \cos A \\\\ & = \dfrac{1}{2} b c \tan A \cos A \\\\ & = \dfrac{b c \cos A}{2 \cot A} \\\\ & \left[\text{Cosine rule: } \cos A = \dfrac{b^2 + c^2 - a^2}{2 b c}\right] \\\\ & = \dfrac{b c \times \left(\dfrac{b^2 + c^2 - a^2}{2 bc}\right)}{2 \cot A} \\\\ & = \dfrac{b^2 + c^2 - a^2}{4 \cot A} \end{aligned}$

Hence proved.