Prove that: sin−1(1213)+cos−1(45)+tan−1(6316)=π
sin−1(x)=tan−1(x√1−x2) if 0<x<1
cos−1(x)=tan−1(√1−x2x) if 0<x<1
tan−1(x)+tan−1(y)=π+tan−1(x+y1−x⋅y),x⋅y>1
tan−1(−x)=−tan−1(x),x∈R
Now, sin−1(1213)+cos−1(45)+tan−1(6316)
=tan−1[12/13√1−(12/13)2]+tan−1[√1−(4/5)24/5]+tan−1(6316)
[Note: 0<1213<1;0<45<1]
=tan−1(125)+tan−1(34)+tan−1(6316)
[Note: 125×34>1]
=π+tan−1(125+341−125×34)+tan−1(6316)
=π+tan−1(−6316)+tan−1(6316)
=π−tan−1(6316)+tan−1(6316)
=π
Hence proved.