Processing math: 100%

Inverse Trigonometric Functions

Prove that: sin1(1213)+cos1(45)+tan1(6316)=π


sin1(x)=tan1(x1x2) if 0<x<1

cos1(x)=tan1(1x2x) if 0<x<1

tan1(x)+tan1(y)=π+tan1(x+y1xy),xy>1

tan1(x)=tan1(x),xR

Now, sin1(1213)+cos1(45)+tan1(6316)

=tan1[12/131(12/13)2]+tan1[1(4/5)24/5]+tan1(6316)

[Note: 0<1213<1;0<45<1]

=tan1(125)+tan1(34)+tan1(6316)

[Note: 125×34>1]

=π+tan1(125+341125×34)+tan1(6316)

=π+tan1(6316)+tan1(6316)

=πtan1(6316)+tan1(6316)

=π

Hence proved.