Prove that: $\;$ $\cot^{-1} \left(\dfrac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}\right) = \dfrac{x}{2}$, $\;\;\;$ $0 < x < \dfrac{\pi}{2}$
$\cot^{-1} \left[\dfrac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}\right]$
$= \cot^{-1} \left[\dfrac{\left(\sqrt{1 + \sin x} + \sqrt{1 - \sin x}\right)^2}{\left(\sqrt{1 + \sin x} - \sqrt{1 - \sin x}\right) \left(\sqrt{1 + \sin x} + \sqrt{1 - \sin x}\right)}\right]$
$= \cot^{-1} \left[\dfrac{1 + \sin x + 1 - \sin x + 2 \sqrt{\left(1 + \sin x\right) \left(1 - \sin x\right)}}{1 + \sin x - 1 + \sin x}\right]$
$= \cot^{-1} \left[\dfrac{2 + 2 \cos x}{2 \sin x}\right]$
$= \cot^{-1} \left[\dfrac{1 + \cos x}{\sin x}\right]$
$= \cot^{-1} \left[\dfrac{2 \cos^2 \left(\dfrac{x}{2}\right)}{2 \sin \left(\dfrac{x}{2}\right) \cos \left(\dfrac{x}{2}\right)}\right]$
$= \cot^{-1} \left[\cot \left(\dfrac{x}{2}\right)\right]$
$= \dfrac{x}{2}$
Hence proved.