Inverse Trigonometric Functions

Prove that: $\;$ $\cos^{-1} \left(2 x^2 - 1\right) = 2 \cos^{-1} \left(x\right), \hspace{1cm} 0 < x <1$


Let $\;$ $x = \cos \theta \implies \theta = \cos^{-1} \left(x\right), \hspace{1cm} \theta \in \left[0, \pi\right]$

$\begin{aligned} \text{Then, } \cos^{-1} \left(2 x^2 - 1\right) & = \cos^{-1} \left(2 \cos^2 \theta - 1\right) \\\\ & = \cos^{-1} \left[\cos \left(2 \theta\right)\right] \hspace{1cm} \left[\text{Note: } \cos 2 \theta = 2 \cos^2 \theta - 1\right] \\\\ & = 2 \theta \\\\ & = 2 \cos^{-1} \left(x\right) \end{aligned}$

Hence proved.