Processing math: 52%

Trigonometric Equations

Solve: sin2θ2cosθ+14=0


sin2θ2cosθ+14=0

i.e. 1cos2θ2cosθ+14=0

i.e. cos2θ+2cosθ54=0

i.e. 4cos2θ+8cosθ5=0

i.e. 4cos2θ+10cosθ2cosθ5=0

i.e. 2cosθ(2cosθ1)+5(2cosθ1)=0

i.e. (2cosθ+5)(2cosθ1)=0

i.e. cosθ=52 or cosθ=12

-1 \leq \cos \theta \leq 1 \; \therefore \; \cos \theta = - \dfrac{5}{2} is not a valid solution.

Principal value of \cos \theta is in \left[0, \pi\right] \; i.e. \; in first or second quadrants.

\therefore \; \cos \theta = \dfrac{1}{2} = \cos \left(\dfrac{\pi}{3}\right) \;\;\; \left(\because \;\cos \theta = +ve\right)

\implies \theta = 2 n \pi \pm \dfrac{\pi}{3}, \;\;\; n \in Z