Solve: sin2θ−2cosθ+14=0
sin2θ−2cosθ+14=0
i.e. 1−cos2θ−2cosθ+14=0
i.e. cos2θ+2cosθ−54=0
i.e. 4cos2θ+8cosθ−5=0
i.e. 4cos2θ+10cosθ−2cosθ−5=0
i.e. 2cosθ(2cosθ−1)+5(2cosθ−1)=0
i.e. (2cosθ+5)(2cosθ−1)=0
i.e. cosθ=−52 or cosθ=12
∵ -1 \leq \cos \theta \leq 1 \; \therefore \; \cos \theta = - \dfrac{5}{2} is not a valid solution.
Principal value of \cos \theta is in \left[0, \pi\right] \; i.e. \; in first or second quadrants.
\therefore \; \cos \theta = \dfrac{1}{2} = \cos \left(\dfrac{\pi}{3}\right) \;\;\; \left(\because \;\cos \theta = +ve\right)
\implies \theta = 2 n \pi \pm \dfrac{\pi}{3}, \;\;\; n \in Z