Inverse Trigonometric Functions

Evaluate: $\;$ $\tan^{-1} \left[\tan \left(\dfrac{5 \pi}{4}\right)\right]$


$\because \;$ $\dfrac{5 \pi}{4} \notin \left(- \dfrac{\pi}{2}, \dfrac{\pi}{2}\right)$

$\begin{aligned} \therefore \; \tan^{-1} \left[\tan \left(\dfrac{5 \pi}{4}\right)\right] & = \tan^{-1} \left[\tan \left(\pi - \dfrac{5 \pi}{4}\right)\right] \\\\ & = \tan^{-1} \left[- \tan \left(- \dfrac{\pi}{4}\right)\right] \hspace{1cm} \left[\text{Note: } \tan \left(\pi - \theta\right) = - \tan \theta\right] \\\\ & = \tan^{-1} \left[\tan \left(\dfrac{\pi}{4}\right)\right] \hspace{1cm} \left[\text{Note: } \tan \left(- \theta\right) = - \tan \theta\right] \\\\ & = \dfrac{\pi}{4} \hspace{1cm} \left[\dfrac{\pi}{4} \in \left(- \dfrac{\pi}{2}, \dfrac{\pi}{2}\right)\right] \end{aligned}$