Inverse Trigonometric Functions

Prove that $\;$ $\cos^{-1} \left(x\right) + \cos^{-1} \left(y\right) = \cos^{-1} \left[x \cdot y - \sqrt{1 - x^2} \cdot \sqrt{1 - y^2}\right]$


Let $\;$ $\cos^{-1} \left(x\right) = \theta_1$, $\;$ $\cos^{-1} \left(y\right) = \theta_2$

Then, $\;$ $\cos \theta_1 = x$, $\;$ $\cos \theta_2 = y$

$\begin{aligned} \text{Now, } \cos \left(\theta_1 + \theta_2\right) & = \cos \theta_1 \cos \cdot \theta_2 - \sin \theta_1 \cdot \sin \theta_2 \\\\ & = \cos \theta_1 \cdot \cos \theta_2 - \sqrt{1 - \cos^2 \theta_1} \cdot \sqrt{1 - \cos^2 \theta_2} \\\\ & = x \cdot y - \sqrt{1 - x^2} \cdot \sqrt{1 - y^2} \end{aligned}$

$\therefore \;$ $\theta_1 + \theta_2 = \cos^{-1} \left[x \cdot y - \sqrt{1 - x^2} \cdot \sqrt{1 - y^2}\right]$

i.e. $\;$ $\cos^{-1} \left(x\right) + \cos^{-1} \left(y\right) = \cos^{-1} \left[x \cdot y - \sqrt{1 - x^2} \cdot \sqrt{1 - y^2}\right]$

Hence proved.