Find the value of: sin−1[sin(5π6)]+cos−1[cos(5π3)]+tan−1[tan(7π3)]
sin−1[sin(5π6)]=sin−1[sin(π−π6)]{5π6∉[−π2,π2]}=sin−1[sin(π6)]=π6{π6∈[−π2,π2]}
cos−1[cos(5π3)]=cos−1[cos(2π−π3)]{5π3∉[0,π]}=cos−1[cos(π3)]=π3{π3∈[0,π]}
tan−1[tan(7π3)]=tan−1[tan(2π+π3)]{7π3∉(−π2,π2)}=tan−1[tan(π3)]=π3{π3∈(−π2,π2)}
∴
= \dfrac{\pi}{6} + \dfrac{\pi}{3} + \dfrac{\pi}{3}
= \dfrac{5 \pi}{6}