Inverse Trigonometric Functions

Solve: $\;$ $\tan^{-1} \left(\dfrac{2 x}{1 - x^2}\right) + \cot^{-1} \left(\dfrac{1 - x^2}{2x}\right) = \dfrac{\pi}{3}, \;$ where $\;$ $x > 0$


$\begin{aligned} \tan^{-1} \left(\dfrac{2 x}{1 - x^2}\right) + \cot^{-1} \left(\dfrac{1 - x^2}{2x}\right) & = \tan^{-1} \left(\dfrac{2 x}{1 - x^2}\right) + \cot^{-1} \left(\dfrac{1}{\dfrac{2x}{1 - x^2}}\right) \\\\ & \left[\text{Note: } \cot^{-1} \left(\dfrac{1}{x}\right) = \tan^{-1} \left(x\right)\right] \\\\ & = \tan^{-1} \left(\dfrac{2 x}{1 - x^2}\right) + \tan^{-1} \left(\dfrac{2x}{1 - x^2}\right) \\\\ & = 2 \tan^{-1} \left(\dfrac{2x}{1 - x^2}\right) \end{aligned}$

$\therefore \;$ $\tan^{-1} \left(\dfrac{2 x}{1 - x^2}\right) + \cot^{-1} \left(\dfrac{1 - x^2}{2x}\right) = \dfrac{\pi}{3}$

$\implies$ $2 \tan^{-1} \left(\dfrac{2x}{1 - x^2}\right) = \dfrac{\pi}{3}$

i.e. $\;$ $\tan^{-1} \left(\dfrac{2x}{1 - x^2}\right) = \dfrac{\pi}{6}$

i.e. $\;$ $\dfrac{2x}{1 - x^2} = \tan \left(\dfrac{\pi}{6}\right) = \dfrac{1}{\sqrt{3}}$

i.e. $\;$ $2 \sqrt{3} x = 1 - x^2$

i.e. $\;$ $x^2 + 2 \sqrt{3} x - 1 = 0$

i.e. $\;$ $x = \dfrac{- 2 \sqrt{3} \pm \sqrt{12 + 4}}{2}$

i.e. $\;$ $x = \dfrac{-2 \sqrt{3} \pm 4}{2}$

i.e. $\;$ $x = - \sqrt{3} + 2$ $\;$ OR $\;$ $x = - \sqrt{3} - 2$

Given: $\;$ $x > 0$

$\therefore \;$ $x = 2 - \sqrt{3}$