Inverse Trigonometric Functions

Prove that $\;$ $\sin^{-1} \left(2 x \sqrt{1 - x^2}\right) = 2 \sin^{-1}x$


Let $\;$ $x = \sin \theta$ $\implies$ $\theta = \sin^{-1} \left(x\right)$ $\;\;\; \cdots \; (1)$

$\begin{aligned} \text{Now, } \sin^{-1} \left(2 x \sqrt{1 - x^2}\right) & = \sin^{-1} \left(2 \sin \theta \sqrt{1 - \sin^2 \theta}\right) \\\\ & = \sin^{-1} \left(2 \sin \theta \sqrt{\cos^2 \theta}\right) \\\\ & = \sin^{-1} \left(2 \sin \theta \cos \theta\right) \\\\ & = \sin^{-1} \left(\sin 2 \theta\right) \\\\ & = 2 \theta \\\\ & = 2 \sin^{-1} \left(x\right) \;\;\; \left[\text{in vew of equation } (1)\right] \\\\ & = \text{RHS} \;\;\; \text{Hence proved} \end{aligned}$