Inverse Trigonometric Functions

Prove that $\;$ $2 \tan^{-1} \left(x\right) = \sin^{-1} \left(\dfrac{2 x}{1 + x^2}\right)$


Let $\;$ $\sin^{-1} \left(\dfrac{2 x}{1 + x^2}\right) = \theta$ $\;\;\; \cdots \; (1)$

Then, $\;$ $\sin \theta = \dfrac{2x}{1 + x^2}$

$\begin{aligned} \therefore \; \cos \theta & = \sqrt{1 - \sin^2 \theta} \\\\ & = \sqrt{1 - \dfrac{4x^2}{\left(1 + x^2\right)^2}} \\\\ & = \sqrt{\dfrac{1 + x^4 - 2 x^2}{\left(1 + x^2\right)^2}} \\\\ & = \sqrt{\left(\dfrac{1 - x^2}{1 + x^2}\right)^2} = \dfrac{1 - x^2}{1 + x^2} \\\\ \therefore \; \tan \theta & = \dfrac{\sin \theta}{\cos \theta} \\\\ & = \dfrac{\dfrac{2x}{1 + x^2}}{\dfrac{1 - x^2}{1 + x^2}} = \dfrac{2x}{1 - x^2} \end{aligned}$

$\implies$ $\theta = \tan^{-1} \left(\dfrac{2x}{1 - x^2}\right) = 2 \tan^{-1} \left(x\right)$ $\;\;\; \cdots \; (2)$

$\therefore \;$ We have from equations $(1)$ and $(2)$,

$2 \tan^{-1} \left(x\right) = \sin^{-1} \left(\dfrac{2 x}{1 + x^2}\right)$ $\;\;\;$ Hence proved