Probability

In the refectory of a college both tea and coffee are sold.

The number of cups of coffee and tea sold per five minute interval may be considered to be independent Poisson distributions with means $2.7$ and $1.5$ respectively.

Calculate the probabilities that, in a given five minute interval,

  1. exactly one cup of coffee and one cup of tea are sold,
  2. exactly two drinks are sold,
  3. more than five drinks are sold.


Number of cups of coffee sold per five minute interval is a Poisson distribution with mean $= 2.7$

$\therefore \;$ Parameter of Poisson distribution (for coffee) $= \lambda_c = 2.7$

Number of cups of tea sold per five minute interval is a Poisson distribution with mean $= 1.5$

$\therefore \;$ Parameter of Poisson distribution (for tea) $= \lambda_t = 1.5$

  1. $P \left(\text{exactly one cup of coffee and one cup of tea are sold}\right)$
    $\hspace{3cm}$ $= P \left(\text{1 cup of coffee sold}\right) \times P \left(\text{1 cup of tea sold}\right)$

    $\begin{aligned} P \left(1 \text{ cup of coffee sold}\right) & = P \left(X = 1\right) \\\\ & = \dfrac{e^{- \lambda_c} \times \left(\lambda_c\right)^{1}}{1!} \\\\ & = e^{- 2.7} \times 2.7 \\\\ & = 0.0672 \times 2.7 = 0.1814 \end{aligned}$

    $\begin{aligned} P \left(1 \text{ cup of tea sold}\right) & = P \left(X = 1\right) \\\\ & = \dfrac{e^{- \lambda_t} \times \left(\lambda_t\right)^{1}}{1!} \\\\ & = e^{- 1.5} \times 1.5 \\\\ & = 0.2231 \times 1.5 = 0.3347 \end{aligned}$

    $\therefore \;$ $P \left(\text{exactly one cup of coffee and one cup of tea are sold}\right)$
    $\hspace{3cm}$ $= 0.1814 \times 0.3347 = 0.0607$

  2. Parameter of Poisson distribution for both number of cups of coffee and tea sold per five minute interval $= \lambda = \lambda_c + \lambda_t = 2.7 + 1.5 = 4.2$

    $P \left(\text{exactly 2 drinks are sold}\right) = P \left(X = 2\right)$

    $\begin{aligned} P \left(X = 2\right) & = \dfrac{e^{- \lambda} \times \lambda^2}{2!} \\\\ & = \dfrac{e^{- 4.2} \times \left(4.2\right)^2}{2} \\\\ & = \dfrac{0.0150 \times 17.64}{2} = 0.1323 \end{aligned}$

  3. $P \left(\text{more than 5 drinks are sold}\right) = P \left(X > 5\right)$

    $P \left(X > 5\right) = 1 - P \left(X \leq 5\right)$

    $\begin{aligned} P \left(X \leq 5\right) & = \sum \limits_{x = 0}^{5} \dfrac{e^{- \lambda} \times \lambda^{x}}{x!} \\\\ & = e^{- \lambda} \times \left[\dfrac{\lambda^{0}}{0!} + \dfrac{\lambda^{1}}{1!} + \dfrac{\lambda^{2}}{2!} + \dfrac{\lambda^{3}}{3!} + \dfrac{\lambda^{4}}{4!} + \dfrac{\lambda^{5}}{5!} \right] \\\\ & = e^{- 4.2} \times \left[1 + \dfrac{4.2}{1} + \dfrac{4.2^2}{2} + \dfrac{4.2^3}{6} + \dfrac{4.2^4}{24} + \dfrac{4.2^5}{120} \right] \\\\ & = 0.0150 \times 50.2243 = 0.7534 \end{aligned}$

    $\therefore \;$ $P \left(X > 5\right) = 1 - 0.7534 = 0.2466$