Given $P \left(A\right) = 0.45$ and $P \left(A \cup B\right) = 0.75$
Find $P \left(B\right)$ if
- $A$ and $B$ are mutually exclusive;
- $A$ and $B$ are independent events;
- $P \left(A | B\right) = 0.50$;
- $P \left(B | A\right) = 0.50$
- If $A$ and $B$ are mutually exclusive events, then $P \left(A \cap B\right) = 0$
By definition, $P \left(A \cup B\right) = P \left(A\right) + P \left(B\right) - P \left(A \cap B\right)$
$\because \;$ $A$ and $B$ are mutually exclusive events,
$P \left(A \cup B\right) = P \left(A\right) + P \left(B\right)$
$\therefore \;$ $P \left(B\right) = P \left(A \cup B\right) - P \left(A\right) = 0.75 - 0.45 = 0.30 = \dfrac{3}{10}$
-
If $A$ and $B$ are independent events, then $P \left(A \cap B\right) = P \left(A\right) \times P \left(B\right)$
By definition, $P \left(A \cup B\right) = P \left(A\right) + P \left(B\right) - P \left(A \cap B\right)$
$\because \;$ $A$ and $B$ are independent events,
$P \left(A \cup B\right) = P \left(A\right) + P \left(B\right) - P \left(A\right) \times P \left(B\right)$
$\implies$ $P \left(B\right) = \dfrac{P \left(A \cup B\right) - P \left(A\right)}{1 - P \left(A\right)}$
i.e. $\;$ $P \left(B\right) = \dfrac{0.75 - 0.45}{1 - 0.45} = \dfrac{0.30}{0.55} = \dfrac{30}{55} = \dfrac{6}{11}$
-
By definition, $P \left(A | B\right) = \dfrac{P \left(A \cap B\right)}{P \left(B\right)}$
i.e. $\;$ $P \left(A | B\right) \times P \left(B\right) = P \left(A \cap B\right)$ $\;\;\; \cdots \; (1)$
Now, $P \left(A \cup B\right) = P \left(A\right) + P \left(B\right) - P \left(A \cap B\right)$
i.e. $\;$ $P \left(A \cap B\right) = P \left(A\right) + P \left(B\right) - P \left(A \cup B\right)$ $\;\;\; \cdots \; (2)$
$\therefore \;$ We have from equations $(1)$ and $(2)$,
$P \left(A\right) + P \left(B\right) - P \left(A \cup B\right) = P \left(A | B\right) \times P \left(B\right)$
i.e. $\;$ $P \left(B\right) = \dfrac{P \left(A\right) - P \left(A \cup B\right)}{P \left(A | B\right) - 1}$
i.e. $\;$ $P \left(B\right) = \dfrac{P \left(A \cup B\right) - P \left(A\right)}{1 - P \left(A | B\right)}$
i.e. $\;$ $P \left(B\right) = \dfrac{0.75 - 0.45}{1 - 0.50} = \dfrac{0.30}{0.50} = \dfrac{3}{5} = 0.60$
-
By definition, $P \left(B | A\right) = \dfrac{P \left(A \cap B\right)}{P \left(A\right)}$
i.e. $\;$ $P \left(B | A\right) \times P \left(A\right) = P \left(A \cap B\right)$ $\;\;\; \cdots \; (3)$
Now, $P \left(A \cup B\right) = P \left(A\right) + P \left(B\right) - P \left(A \cap B\right)$
i.e. $\;$ $P \left(A \cap B\right) = P \left(A\right) + P \left(B\right) - P \left(A \cup B\right)$ $\;\;\; \cdots \; (4)$
$\therefore \;$ We have from equations $(3)$ and $(4)$,
$P \left(A\right) + P \left(B\right) - P \left(A \cup B\right) = P \left(B | A\right) \times P \left(A\right)$
i.e. $\;$ $P \left(B\right) = P \left(B | A\right) \times P \left(A\right) - P \left(A\right) + P \left(A \cup B\right)$
i.e. $\;$ $P \left(B\right) = 0.50 \times 0.45 - 0.45 + 0.75 = 0.525$