Probability

Find each probability if three coins are tossed:

  1. P($3$ heads or $3$ tails)
  2. P(exactly $2$ tails)


When a coin is tossed,

probability of getting head $= p = \dfrac{1}{2}$

probability of getting tail $= q = 1- p = \dfrac{1}{2}$

Number of coins $= 3$

  1. P($3$ heads or $3$ tails)

    $= P \left(3 \text{ heads}\right) + P \left(3 \text{ tails}\right)$

    $= {^{3}}{C}_{3} \times \left(\dfrac{1}{2}\right)^3 \times \left(\dfrac{1}{2}\right)^0 + {^{3}}{C}_{0} \times \left(\dfrac{1}{2}\right)^0 \times \left(\dfrac{1}{2}\right)^3$

    $= 2 \times \left(\dfrac{1}{2}\right)^3$

    $= \dfrac{1}{4}$

  2. P(exactly $2$ tails)

    $= P \left(\text{exactly }1 \text{ head}\right)$

    $= {^{3}}{C}_{1} \times \left(\dfrac{1}{2}\right)^1 \times \left(\dfrac{1}{2}\right)^2$

    $= 3 \times \dfrac{1}{8} = \dfrac{3}{8}$