Processing math: 38%

Probability

For the distribution function given by F(x)={0,x<0x2,0x11,x>1
find the density function. Also evaluate

  1. P(0.5<x<0.75)

  2. P(x0.5)

  3. P(x>0.75)


Probability density function (p.d.f) =f(x)=ddxF(x)

Now, ddx(x2)=2x and ddx(1)=0

f \left(x\right) = \begin{cases} 2 x, & 0 \leq x \leq 1 \\ & \\ 0, & \text{ elsewhere} \end{cases}

  1. P \left(0.5 < x < 0.75\right) = \int \limits_{0.5}^{0.75} 2 \; x \; dx

    Now,

    \begin{aligned} \int \limits_{0.5}^{0.75} 2 \; x \; dx & = 2 \times \left[\dfrac{x^2}{2}\right]_{0.5}^{0.75} \\\\ & = \left(0.75\right)^2 - \left(0.5\right)^2 = 0.3125 \end{aligned}

    \therefore \; P \left(0.5 < x < 0.75\right) = 0.3125

  2. P \left(x \leq 0.5\right) = \int \limits_{0}^{0.5} 2 \; x \; dx

    Now,

    \begin{aligned} \int \limits_{0}^{0.5} 2 \; x \; dx & = 2 \times \left[\dfrac{x^2}{2}\right]_{0}^{0.5} \\\\ & = \left(0.5\right)^2 = 0.25 \end{aligned}

    \therefore \; P \left(x \leq 0.5\right) = 0.25

  3. P \left(x > 0.75\right) = \int \limits_{0.75}^{1} 2 \; x \; dx

    Now,

    \begin{aligned} \int \limits_{0.75}^{1} 2 \; x \; dx & = 2 \times \left[\dfrac{x^2}{2}\right]_{0.75}^{1} \\\\ & = \left(1\right)^2 - \left(0.75\right)^2 = 0.4375 \end{aligned}

    \therefore \; P \left(x > 0.75\right) = 0.4375