For the distribution function given by
F(x)={0,x<0x2,0≤x≤11,x>1
find the density function. Also evaluate
- P(0.5<x<0.75)
- P(x≤0.5)
- P(x>0.75)
Probability density function (p.d.f) =f(x)=ddxF(x)
Now, ddx(x2)=2x and ddx(1)=0
∴ f \left(x\right) = \begin{cases}
2 x, & 0 \leq x \leq 1 \\
& \\
0, & \text{ elsewhere}
\end{cases}
- P \left(0.5 < x < 0.75\right) = \int \limits_{0.5}^{0.75} 2 \; x \; dx
Now,
\begin{aligned} \int \limits_{0.5}^{0.75} 2 \; x \; dx & = 2 \times \left[\dfrac{x^2}{2}\right]_{0.5}^{0.75} \\\\ & = \left(0.75\right)^2 - \left(0.5\right)^2 = 0.3125 \end{aligned}
\therefore \; P \left(0.5 < x < 0.75\right) = 0.3125
- P \left(x \leq 0.5\right) = \int \limits_{0}^{0.5} 2 \; x \; dx
Now,
\begin{aligned} \int \limits_{0}^{0.5} 2 \; x \; dx & = 2 \times \left[\dfrac{x^2}{2}\right]_{0}^{0.5} \\\\ & = \left(0.5\right)^2 = 0.25 \end{aligned}
\therefore \; P \left(x \leq 0.5\right) = 0.25
- P \left(x > 0.75\right) = \int \limits_{0.75}^{1} 2 \; x \; dx
Now,
\begin{aligned} \int \limits_{0.75}^{1} 2 \; x \; dx & = 2 \times \left[\dfrac{x^2}{2}\right]_{0.75}^{1} \\\\ & = \left(1\right)^2 - \left(0.75\right)^2 = 0.4375 \end{aligned}
\therefore \; P \left(x > 0.75\right) = 0.4375