Probability

A discrete random variable $X$ has the following probability distribution:

$X$ $0$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$
$P \left(X\right)$ $a$ $3a$ $5a$ $7a$ $9a$ $11a$ $13a$ $15a$ $17a$

  1. Find the value of $a$
  2. Find $P \left(x < 3\right)$
  3. Find $P \left(3 < x < 7\right)$


  1. $\sum \limits_{i=0}^{8} p_i = 1 $

    Here $\;$ $p_0 = a, \; p_1 = 3a, \; p_2 = 5a, \; \cdots \; p_8 = 17a$

    Now, $\;$ $a + 3a + 5a + 7a + 9a + 11a + 13a + 15a + 17a = 81a$

    $\therefore \;$ $81 a = 1$ $\implies$ $a = \dfrac{1}{81}$

  2. $P \left(x < 3\right) = P \left(0\right) + P \left(1\right) + P \left(2\right)$

    $\begin{aligned} \therefore \; P \left(x < 3\right) & = a + 3a + 5a \\\\ & = 9a \\\\ & = 9 \times \dfrac{1}{81} = \dfrac{1}{9} \end{aligned}$

  3. $P \left(3 < x < 7\right) = P \left(4\right) + P \left(5\right) + P \left(6\right)$

    $\begin{aligned} \therefore \; P \left(3 < x < 7\right) & = 9a + 11a + 13a \\\\ & = 33a \\\\ & = 33 \times \dfrac{1}{81} = \dfrac{11}{27} \end{aligned}$