Complex Numbers

Prove that if $\omega^3 = 1$, then $\dfrac{1}{1 + 2 \omega} - \dfrac{1}{1 + \omega} + \dfrac{1}{2 + \omega} = 0$


Given: $\;$ $\omega^3 = 1$

$\implies$ $\omega$ is the cube root of unity.

Then, $1 + \omega + \omega^2 = 0$

Now,

$\begin{aligned} \dfrac{1}{1 + 2 \omega} - \dfrac{1}{1 + \omega} & = \dfrac{1 + \omega - 1 - 2 \omega}{\left(1 + 2 \omega\right) \left(1 + \omega\right)} \\\\ & = \dfrac{- \omega}{1 + 3 \omega + 2 \omega^2} \\\\ & = \dfrac{-\omega}{\left(1 + \omega + \omega^2\right) + 2 \omega + \omega^2} \\\\ & = \dfrac{- \omega}{2 \omega + \omega^2} \\\\ & = \dfrac{-1}{2 + \omega} \end{aligned}$

$\begin{aligned} \therefore \; \dfrac{1}{1 + 2 \omega} - \dfrac{1}{1 + \omega} + \dfrac{1}{2 + \omega} & = \dfrac{-1}{2 + \omega} + \dfrac{1}{2 + \omega} \\\\ & = 0 \end{aligned}$

Hence proved.