Complex Numbers

If $\alpha$ and $\beta$ are the roots of the equation $x^2 - 2px + \left(p^2 + q^2\right) = 0$ and $\tan \theta = \dfrac{q}{y + p}$, show that $\dfrac{\left(y + \alpha\right)^n - \left(y + \beta\right)^n}{\alpha - \beta} = q^{n - 1} \left(\dfrac{\sin n\theta}{\sin^n \theta}\right)$


The roots of the given quadratic equation $\;$ $x^2 - 2px + \left(p^2 + q^2\right) = 0$ $\;$ are

$\begin{aligned} x & = \dfrac{2p \pm \sqrt{4p^2 - 4p^2 - 4q^2}}{2} \\\\ & = \dfrac{2p \pm 2iq}{2} \\\\ & = p \pm iq \end{aligned}$

$\because$ $\;$ $\alpha$ and $\beta$ are the roots of the given quadratic equation, let

$\alpha = p + i q$ $\;$ and $\;$ $\beta = p - iq$

Given: $\;$ $\tan \theta = \dfrac{q}{y + p}$

$\implies$ $y = \dfrac{q}{\tan \theta} - p$

$\begin{aligned} \therefore \; \left(y + \alpha\right)^n & = \left(\dfrac{q}{\tan \theta} - p + p + iq\right)^n \\\\ & = \left[q \left(\dfrac{1}{\tan \theta} + i\right)\right]^n \\\\ & = q^n \left[\dfrac{\cos \theta + i \sin \theta}{\sin \theta}\right]^n \\\\ & = \dfrac{q^n \left[\cos \left(n\theta\right) + i \sin \left(n \theta\right)\right]}{\sin^n \theta} \;\;\; \cdots \; (1) \end{aligned}$

$\begin{aligned} \left(y + \beta\right)^n & = \left(\dfrac{q}{\tan \theta} - p + p - iq\right)^n \\\\ & = \left[q \left(\dfrac{1}{\tan \theta} - i\right)\right]^n \\\\ & = q^n \left[\dfrac{\cos \theta - i \sin \theta}{\sin \theta}\right]^n \\\\ & = \dfrac{q^n \left[\cos \left(n\theta\right) - i \sin \left(n \theta\right)\right]}{\sin^n \theta} \;\;\; \cdots \; (2) \end{aligned}$

$\alpha - \beta = p + iq - \left(p - iq\right) = 2 \; i \; q$ $\;\;\; \cdots \; (3)$

$\therefore$ $\;$ We have from equations $(1)$, $(2)$ and $(3)$,

$\begin{aligned} \dfrac{\left(y + \alpha\right)^n - \left(y + \beta\right)^n}{\alpha - \beta} & = \dfrac{\dfrac{q^n \left[\cos \left(n\theta\right) + i \sin \left(n \theta\right)\right]}{\sin^n \theta} - \dfrac{q^n \left[\cos \left(n\theta\right) - i \sin \left(n \theta\right)\right]}{\sin^n \theta}}{2 \;i \;q} \\\\ & = \dfrac{q^n \left[\cos \left(n \theta\right) + i \sin \left(n \theta\right) - \cos \left(n \theta\right) + i \sin \left(n \theta\right)\right]}{2 \;i \;q \; \sin^n \theta} \\\\ & = \dfrac{2 \; i \; q^n \; \sin \left(n \theta\right)}{2 \; i \; q \; \sin^n \theta} \\\\ & = q^{n - 1} \left[\dfrac{\sin \left(n \theta\right)}{\sin^n \theta}\right] \end{aligned}$

Hence proved.