Vector Algebra

Find the non-parametric vector equation, parametric vector equation and cartesian equation of the plane through the point $\left(-1,3,2\right)$ and perpendicular to the planes $x + 2y + 2z = 5$ and $3x + y + 2z = 8$


Non-parametric vector equation of plane

The equation of a plane passing through a given point $\overrightarrow{a}$ and perpendicular to two given planes $\overrightarrow{r} \cdot \overrightarrow{n_1} = d_1$ and $\overrightarrow{r} \cdot \overrightarrow{n_2} = d_2$ is

$\left(\overrightarrow{r} - \overrightarrow{a}\right) \cdot \left(\overrightarrow{n_1} \times \overrightarrow{n_2}\right) = 0$

The required plane pass through the point $A \left(x_1,y_1,z_1\right) = \left(-1,3,2\right)$

$\therefore$ $\;$ position vector of point $A$ is $\overrightarrow{a} = - \hat{i} + 3 \hat{j} + 2 \hat{k}$

Cartesian equations of given planes are

$x + 2y + 2z = 5$ $\;\;\; \cdots \; (1a)$

$3x + y + 2z = 8$ $\;\;\; \cdots \; (2a)$

$\therefore$ $\;$ Vector equations of the given planes are

$\overrightarrow{r} \cdot \left(\hat{i} + 2 \hat{j} + 2 \hat{k}\right) = 5$ $\;\;\; \cdots \; (1b)$

$\overrightarrow{r} \cdot \left(3 \hat{i} + \hat{j} + 2 \hat{k}\right) = 8$ $\;\;\; \cdots \; (2b)$

Let $\;\;$ $\overrightarrow{n_1} = \hat{i} + 2 \hat{j} + 2 \hat{k}$; $\;\;$ $\overrightarrow{n_2} = 3 \hat{i} + \hat{j} + 2 \hat{k}$; $\;\;$ $d_1 = 5$; $\;\;$ $d_2 = 8$

Now,

$\begin{aligned} \overrightarrow{n_1} \times \overrightarrow{n_2} & = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 2 \\ 3 & 1 & 2 \end{vmatrix} \\\\ & = 2 \hat{i} + 4 \hat{j} - 5 \hat{k} \end{aligned}$

$\therefore$ $\;$ The non-parametric vector equation of the required plane is

$\left[\overrightarrow{r} - \left(- \hat{i} + 3 \hat{j} + 2 \hat{k}\right)\right] \cdot \left(2 \hat{i} + 4 \hat{j} - 5 \hat{k}\right) = 0$

i.e. $\;$ $\overrightarrow{r} \cdot \left(2 \hat{i} + 4 \hat{j} - 5 \hat{k}\right) = \left(- \hat{i} + 3 \hat{j} + 2 \hat{k}\right) \cdot \left(2 \hat{i} + 4 \hat{j} - 5 \hat{k}\right)$

i.e. $\;$ $\overrightarrow{r} \cdot \left(2 \hat{i} + 4 \hat{j} - 5 \hat{k}\right) = 0$

Parametric vector equation of plane

The normal vector to plane $(1a)$ is $\;\;$ $\overrightarrow{u} = \hat{i} + 2 \hat{j} + 2 \hat{k}$ $\;\;\; \cdots \; (1c)$

The normal vector to plane $(1a)$ is $\;\;$ $\overrightarrow{v} = 3 \hat{i} + \hat{j} + 2 \hat{k}$ $\;\;\; \cdots \; (2c)$

$\therefore$ $\;$ The required plane passes through the point $A$ and is parallel to the vectors $(1c)$ and $(2c)$.

$\therefore$ $\;$ Parametric vector equation of the plane is

$\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{u} + \mu \overrightarrow{v}$ $\;\;$ [$\lambda$ and $\mu$ are scalars]

i.e. $\;$ $\overrightarrow{r} = \left(- \hat{i} + 3 \hat{j} + 2 \hat{k}\right) + \lambda \left(\hat{i} + 2 \hat{j} + 2 \hat{k}\right) + \mu \left(3 \hat{i} + \hat{j} + 2 \hat{k}\right)$

Cartesian equation of plane

Equations of given planes are $(1a)$ and $(2a)$.

They are of the form $\;\;$ $a_1 x + b_y + c_1z + d_1 = 0$ $\;$ and $\;$ $a_2 x + b_2 y + c_2 z + d_2 = 0$ respectively.

$\therefore$ $\;$ $a_1 = 1, \; b_1 = 2, \; c_1 = 2, \; d_1 = -5$ $\;$ and $\;$ $a_2 = 3, \; b_2 = 1, \; c_2 = 2, \; d_2 = - 8$

Equation of the required plane through point $A$ is

$a \left(x + 1\right) + b \left(y - 3\right) + c \left(z - 2\right) = 0$ $\;\;\; \cdots \; (3a)$

$\because$ $\;$ The required plane is perpendicular to the given planes, we have

$aa_1 + bb_1 + c c_1 = 0$

i.e. $\;$ $a + 2b + 2c = 0$ $\;\;\; \cdots \; (3b)$

and $\;$ $a a_2 + b b_2 + c c_2 = 0$

i.e. $\;$ $3a + b + 2c = 0$ $\;\;\; \cdots \; (3c)$

Eliminating $a$, $b$ and $c$ from equations $(3a)$, $(3b)$ and $(3c)$, the required equation of plane is

$\begin{vmatrix} x + 1 & y - 3 & z - 2 \\ 1 & 2 & 2 \\ 3 & 1 & 2 \end{vmatrix} = 0$

i.e. $\;$ $2 \left(x + 1\right) + 4 \left(y - 3\right) - 5 \left(z - 2\right) = 0$

i.e. $\;$ $2x + 4y - 5z = 0$