Vector Algebra

Find the vector and cartesian equation of the line through the point $\left(3, -4, -2\right)$ and parallel to the vector $9 \hat{i} + 6 \hat{j} + 2 \hat{k}$.


Let $\overrightarrow{a}$ be the position vector of the point $\left(3, -4, -2\right)$.

Then, $\;$ $\overrightarrow{a} = 3 \hat{i} - 4 \hat{j} - 2 \hat{k}$

Let $\;$ $\overrightarrow{m} = 9 \hat{i} + 6 \hat{j} + 2 \hat{k}$

Then, the vector equation of the required line is $\;\;$ $\overrightarrow{r} = a + \lambda \overrightarrow{m}$ $\;\;$ where $\lambda$ is a constant.

i.e. $\;$ $\overrightarrow{r} = \left(3 \hat{i} - 4 \hat{j} - 2 \hat{k}\right) + \lambda \left(9 \hat{i} + 6 \hat{j} + 2 \hat{k}\right)$ $\;\;\; \cdots \; (1)$

Equation $(1)$ is the required vector equation of the line.

Now, $\overrightarrow{r}$ is the position vector of any point $P \left(x, y, z\right)$ on the line.

i.e. $\;$ $\overrightarrow{r} = x \hat{i} + y \hat{j} + z \hat{k}$

$\begin{aligned} \therefore \; x \hat{i} + y \hat{j} + z \hat{k} & = \left(3 \hat{i} - 4 \hat{j} - 2 \hat{k}\right) + \lambda \left(9 \hat{i} + 6 \hat{j} + 2 \hat{k}\right) \\\\ & = \left(3 + 9 \lambda\right) \hat{i} + \left(-4 + 6 \lambda\right) \hat{j} + \left(-2 + 2 \lambda\right) \hat{k} \end{aligned}$

Comparing the coefficients of $\hat{i}$, $\hat{j}$ and $\hat{k}$ on both sides, we get

$x = 3 + 9 \lambda$, $\;\;$ $y = -4 + 6 \lambda$ $\;\;$ $z = -2 + 2 \lambda$

Eliminating $\lambda$,

$\dfrac{x - 3}{9} = \dfrac{y + 4}{6} = \dfrac{z + 2}{2}$ $\;\;\; \cdots \; (2)$

Equation $(2)$ gives the equation of the line in cartesian form.