Vector Algebra

Find the unit normal vectors to the plane $2x - y + 2z = 5$.


Equation of the plane is

$2x - y + 2z = 5$

Its vector equation is

$\overrightarrow{r} \cdot \left(2 \hat{i} - \hat{j} + 2 \hat{k}\right) = 5$ $\;\;\;$ [$\overrightarrow{r}$ is a vector lying in the plane.]

A normal vector to the plane is

$\overrightarrow{n} = 2 \hat{i} - \hat{j} + 2 \hat{k}$

$\therefore$ $\;$ Unit normal vectors to the plane are

$\begin{aligned} \hat{n} & = \pm \left(\dfrac{\overrightarrow{n}}{\left|\overrightarrow{n}\right|}\right) \\\\ & = \pm \left(\dfrac{2 \hat{i} - \hat{j} + 2 \hat{k}}{\sqrt{\left(2\right)^2 + \left(-1\right)^2 + \left(2\right)^2}}\right) \\\\ & = \pm \left(\dfrac{2 \hat{i} - \hat{j} + 2 \hat{k}}{3}\right) \end{aligned}$