Vector Algebra

Verify that $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \left(\overrightarrow{c} \times \overrightarrow{d}\right) = \left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{d}\right] \overrightarrow{c} - \left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\right] \overrightarrow{d}$ if $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{b} = 2 \hat{i} + \hat{k}$, $\overrightarrow{c} = 2 \hat{i} + \hat{j} + \hat{k}$ and $\overrightarrow{d} = \hat{i} + \hat{j} + 2 \hat{k}$


$\begin{aligned} \overrightarrow{a} \times \overrightarrow{b} & = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 & 0 & 1 \end{vmatrix} \\\\ & = \hat{i} \left(1 - 0\right) - \hat{j} \left(1 - 2\right) + \hat{k} \left(0 - 2\right) \\\\ & = \hat{i} + \hat{j} - 2 \hat{k} \end{aligned}$

$\begin{aligned} \overrightarrow{c} \times \overrightarrow{d} & = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{vmatrix} \\\\ & = \hat{i} \left(2 - 1\right) - \hat{j} \left(4 - 1\right) + \hat{k} \left(2 - 1\right) \\\\ & = \hat{i} - 3 \hat{j} + \hat{k} \end{aligned}$

$\begin{aligned} \therefore \; \left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \left(\overrightarrow{c} \times \overrightarrow{d}\right) & = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -2 \\ 1 & -3 & 1 \end{vmatrix} \\\\ & = \hat{i} \left(1 - 6\right) - \hat{j} \left(1 + 2\right) + \hat{k} \left(-3 - 1\right) \\\\ & = - 5 \hat{i} - 3 \hat{j} - 4 \hat{k} \;\;\; \cdots \; (1) \end{aligned}$

$\left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{d}\right] = \overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{d}\right)$

$\begin{aligned} \overrightarrow{b} \times \overrightarrow{d} & = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 1 \\ 1 & 1 & 2 \end{vmatrix} \\\\ & = \hat{i} \left(0 - 1\right) - \hat{j} \left(4 - 1\right) + \hat{k} \left(2 - 0\right) \\\\ & = - \hat{i} - 3 \hat{j} + 2 \hat{k} \end{aligned}$

$\begin{aligned} \therefore \; \overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{d}\right) & = \left(\hat{i} + \hat{j} + \hat{k}\right) \cdot \left(- \hat{i} - 3 \hat{j} + 2 \hat{k}\right) \\\\ & = -1 - 3 + 2 \\\\ & = - 2 \end{aligned}$

$\begin{aligned} \therefore \; \left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{d}\right] \overrightarrow{c} & = -2 \left(2 \hat{i} + \hat{j} + \hat{k}\right) \\\\ & = - 4 \hat{i} - 2 \hat{j} - 2 \hat{k} \;\;\; \cdots \; (2a) \end{aligned}$

$\left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\right] = \overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c}\right)$

$\begin{aligned} \overrightarrow{b} \times \overrightarrow{c} & = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 1 \\ 2 & 1 & 1 \end{vmatrix} \\\\ & = \hat{i} \left(0 - 1\right) - \hat{j} \left(2 - 2\right) + \hat{k} \left(2 - 0\right) \\\\ & = - \hat{i} + 2 \hat{k} \end{aligned}$

$\begin{aligned} \therefore \; \overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c}\right) & = \left(\hat{i} + \hat{j} + \hat{k}\right) \cdot \left(- \hat{i} + 2 \hat{k}\right) \\\\ & = -1 + 2 \\\\ & = 1 \end{aligned}$

$\begin{aligned} \therefore \; \left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\right] \overrightarrow{d} & = 1 \left(\hat{i} + \hat{j} + 2 \hat{k}\right) \\\\ & = \hat{i} + \hat{j} + 2 \hat{k} \;\;\; \cdots \; (2b) \end{aligned}$

$\therefore$ $\;$ We have from equations $(2a)$ and $(2b)$,

$\begin{aligned} \left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{d}\right] \overrightarrow{c} - \left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\right] \overrightarrow{d} & = \left(-4 \hat{i} - 2 \hat{j} - 2 \hat{k}\right) - \left(\hat{i} + \hat{j} + 2 \hat{k}\right) \\\\ & = - 5 \hat{i} - 3 \hat{j} - 4 \hat{k} \;\;\; \cdots \; (3) \end{aligned}$

$\therefore$ $\;$ We have from equations $(1)$ and $(3)$,

$\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \left(\overrightarrow{c} \times \overrightarrow{d}\right) = \left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{d}\right] \overrightarrow{c} - \left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\right] \overrightarrow{d}$

Hence proved.