Vector Algebra

Prove that $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \cdot \left(\overrightarrow{c} \times \overrightarrow{d}\right) + \left(\overrightarrow{b} \times \overrightarrow{c}\right) \cdot \left(\overrightarrow{a} \times \overrightarrow{d}\right) + \left(\overrightarrow{c} \times \overrightarrow{a}\right) \cdot \left(\overrightarrow{b} \times \overrightarrow{d}\right) = 0$


By definition,

$\begin{aligned} \left(\overrightarrow{a} \times \overrightarrow{b}\right) \cdot \left(\overrightarrow{c} \times \overrightarrow{d}\right) & = \begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{c} & \overrightarrow{a} \cdot \overrightarrow{d} \\\\ \overrightarrow{b} \cdot \overrightarrow{c} & \overrightarrow{b} \cdot \overrightarrow{d} \end{vmatrix} \\\\ & = \left(\overrightarrow{a} \cdot \overrightarrow{c}\right) \left(\overrightarrow{b} \cdot \overrightarrow{d}\right) - \left(\overrightarrow{b} \cdot \overrightarrow{c}\right) \left(\overrightarrow{a} \cdot \overrightarrow{d}\right) \end{aligned}$

$\begin{aligned} \left(\overrightarrow{b} \times \overrightarrow{c}\right) \cdot \left(\overrightarrow{a} \times \overrightarrow{d}\right) & = \begin{vmatrix} \overrightarrow{b} \cdot \overrightarrow{a} & \overrightarrow{b} \cdot \overrightarrow{d} \\\\ \overrightarrow{c} \cdot \overrightarrow{a} & \overrightarrow{c} \cdot \overrightarrow{d} \end{vmatrix} \\\\ & = \left(\overrightarrow{b} \cdot \overrightarrow{a}\right) \left(\overrightarrow{c} \cdot \overrightarrow{d}\right) - \left(\overrightarrow{c} \cdot \overrightarrow{a}\right) \left(\overrightarrow{b} \cdot \overrightarrow{d}\right) \end{aligned}$

$\begin{aligned} \left(\overrightarrow{c} \times \overrightarrow{a}\right) \cdot \left(\overrightarrow{b} \times \overrightarrow{d}\right) & = \begin{vmatrix} \overrightarrow{c} \cdot \overrightarrow{b} & \overrightarrow{c} \cdot \overrightarrow{d} \\\\ \overrightarrow{a} \cdot \overrightarrow{b} & \overrightarrow{a} \cdot \overrightarrow{d} \end{vmatrix} \\\\ & = \left(\overrightarrow{c} \cdot \overrightarrow{b}\right) \left(\overrightarrow{a} \cdot \overrightarrow{d}\right) - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right) \left(\overrightarrow{c} \cdot \overrightarrow{d}\right) \end{aligned}$

$\therefore$ $\;$ $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \cdot \left(\overrightarrow{c} \times \overrightarrow{d}\right) + \left(\overrightarrow{b} \times \overrightarrow{c}\right) \cdot \left(\overrightarrow{a} \times \overrightarrow{d}\right) + \left(\overrightarrow{c} \times \overrightarrow{a}\right) \cdot \left(\overrightarrow{b} \times \overrightarrow{d}\right) =$

$\;\;\;\;$ $\left(\overrightarrow{a} \cdot \overrightarrow{c}\right) \left(\overrightarrow{b} \cdot \overrightarrow{d}\right) - \left(\overrightarrow{b} \cdot \overrightarrow{c}\right) \left(\overrightarrow{a} \cdot \overrightarrow{d}\right) + \left(\overrightarrow{b} \cdot \overrightarrow{a}\right) \left(\overrightarrow{c} \cdot \overrightarrow{d}\right)$
$\;\;\;\;\;\;\;$ $- \left(\overrightarrow{c} \cdot \overrightarrow{a}\right) \left(\overrightarrow{b} \cdot \overrightarrow{d}\right) + \left(\overrightarrow{c} \cdot \overrightarrow{b}\right) \left(\overrightarrow{a} \cdot \overrightarrow{d}\right) - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right) \left(\overrightarrow{c} \cdot \overrightarrow{d}\right)$

$= \left\{\left(\overrightarrow{a} \cdot \overrightarrow{c}\right) - \left(\overrightarrow{c} \cdot \overrightarrow{a}\right)\right\} \left(\overrightarrow{b} \cdot \overrightarrow{d}\right) + \left\{\left(\overrightarrow{c} \cdot \overrightarrow{b}\right) - \left(\overrightarrow{b} \cdot \overrightarrow{c}\right)\right\} \left(\overrightarrow{a} \cdot \overrightarrow{d}\right)$
$\;\;\;\;\;\;\;\;\;\;\;\;\;$ $+ \left\{\left(\overrightarrow{b} \cdot \overrightarrow{a}\right) - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right)\right\} \left(\overrightarrow{c} \cdot \overrightarrow{d}\right)$

$= 0$ $\;\;\;$ $\because$ $\;$ $\overrightarrow{a} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{a}$; $\;\;$ $\overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{b}$; $\;\;$ $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$

Hence proved.