Vector Algebra

Find the cartesian equation of the plane which contains the lines $\dfrac{x+1}{2} = \dfrac{y - 2}{-3} = \dfrac{z - 3}{4}$ and $\dfrac{x - 4}{3} = \dfrac{y - 1}{2} = z - 8$


Equations of the given lines are

$L_1: \;\; \dfrac{x+1}{2} = \dfrac{y - 2}{-3} = \dfrac{z - 3}{4}$

$L_2: \;\; \dfrac{x - 4}{3} = \dfrac{y - 1}{2} = \dfrac{z - 8}{1}$

Lines $L_1$ and $L_2$ are of the form

$\dfrac{x - x_1}{a_1} = \dfrac{y - y_1}{b_1} = \dfrac{z - z_1}{c_1}$ $\;$ and $\;$ $\dfrac{x - x_2}{a_2} = \dfrac{y - y_2}{b_2} = \dfrac{z - z_2}{c_2}$ $\;$ respectively.

Here

$x_1 = -1, \; y_1 = 2, \; z_1 = 3$; $\;$ $x_2 = 4, \; y_2 = 1, \; z_2 = 8$

$a_1 = 2, \; b_1 = -3, \; c_1 = 4$; $\;$ $a_2 = 3, \; b_2 = 2, \; c_2 = 1$

Now,

$\begin{aligned} \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} & = \begin{vmatrix} 5 & -1 & 5 \\ 2 & -3 & 4 \\ 3 & 2 & 1 \end{vmatrix} \\\\ & = 5 \left(-3 - 8\right) + \left(2 - 12\right) + 5 \left(4 + 9\right) \\\\ & = -55 - 10 + 65 = 0 \end{aligned}$

$\therefore$ $\;$ The given lines are coplanar.

$\therefore$ $\;$ The equation of plane containing the given lines is

$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$

i.e. $\;$ $\begin{vmatrix} x +1 & y - 2 & z - 3 \\ 2 & -3 & 4 \\ 3 & 2 & 1 \end{vmatrix} = 0$

i.e. $\;$ $\left(x + 1\right) \left(-3 - 8\right) - \left(y - 2\right) \left(2 - 12\right) + \left(z - 3\right) \left(4 + 9\right) = 0$

i.e. $\;$ $- 11x + 10 y + 13 z - 70 = 0$

i.e. $\;$ $11x - 10 y - 13 z + 70 = 0$