Vector Algebra

If the points $\left(\lambda, 0, 3\right)$, $\left(1, 3 , -1\right)$ and $\left(-5, -3, 7\right)$ are collinear, then find $\lambda$.


Let $\overrightarrow{a}$, $\overrightarrow{b}$ and $\overrightarrow{c}$ be the position vectors of the points $\left(\lambda, 0, 3\right)$, $\left(1, 3 , -1\right)$ and $\left(-5, -3, 7\right)$ respectively.

Then,

$\overrightarrow{a} = \lambda \hat{i} + 3 \hat{k}$

$\overrightarrow{b} = \hat{i} + 3 \hat{j} - \hat{k}$

$\overrightarrow{c} = -5 \hat{i} - 3 \hat{j} + 7 \hat{k}$

$\because$ $\;$ The points are collinear, the position vectors of the points are coplanar.

The position vectors are coplanar $\implies$ $\left[\overrightarrow{a} \; \overrightarrow{b} \; \overrightarrow{c}\right] = 0$

Now,

$\left[\overrightarrow{a} \; \overrightarrow{b} \; \overrightarrow{c}\right] = 0$ $\implies$ $\begin{vmatrix} \lambda & 0 & 3 \\ 1 & 3 & -1 \\ -5 & -3 & 7 \end{vmatrix} = 0$

i.e. $\;$ $\lambda \left(21 - 3\right) + 3 \left(- 3 + 15\right) = 0$

i.e. $\;$ $18 \lambda = -36$ $\implies$ $\lambda = -2$