Vector Algebra

The volume of a parallelopiped whose edges are represented by $-12 \hat{i} + \lambda \hat{k}$, $3 \hat{j} - \hat{k}$ and $2 \hat{i} + \hat{j} - 15 \hat{k}$ is $546$. Find the value of $\lambda.$


Let $\overrightarrow{a} = -12 \hat{i} + \lambda \hat{k}$, $\;$ $\overrightarrow{b} = 3 \hat{j} - \hat{k}$ $\;$ and $\;$ $\overrightarrow{c} = 2 \hat{i} + \hat{j} - 15 \hat{k}$

$\begin{aligned} \text{Volume of parallelopiped} = \left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\right] & = \overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c}\right) \\\\ & = \begin{vmatrix} -12 & 0 & \lambda \\ 0 & 3 & -1 \\ 2 & 1 & -15 \end{vmatrix} \\\\ & = - 12 \times \left(-45 + 1\right) + 0 + \lambda \times \left(0 - 6\right) \\\\ & = 528 - 6 \lambda \end{aligned}$

Given: $\;$ volume of parallelopiped $= 546$

i.e. $\;$ $528 - 6 \lambda = 546$ $\implies$ $- 6 \lambda = 18$ $\implies$ $\lambda = -3$