Complex Numbers

Solve the equation $\;$ $x^4 - 8 x^3 + 24 x^2 - 32 x + 20 = 0$ $\;$ if $\;$ $3 + i$ $\;$ is a root.


Given: $\;\;$ One root is $\left(3 + i\right)$

$\implies$ $\left(3 - i\right)$ is also a root.

Sum of roots $= 6$

Product of roots $= \left(3 + i\right) \left(3 - i\right) = 9 - i^2 = 10$

$\therefore$ $\;$ The corresponding factor is $\;$ $x^2 - 6x + 10$

$\therefore$ $\;$ $x^4 - 8 x^3 + 24 x^2 - 32 x + 20 = \left(x^2 - 6x + 10\right) \left(x^2 + \lambda x + 2\right)$ $\;\;\; \cdots \; (1)$

$\lambda$ $\;$ is a real number (constant).

Equating the coefficients of the $x$ term in equation $(1)$ we have,

$- 32 = -12 + 10 \lambda$

i.e. $\;$ $10 \lambda = -20$ $\implies$ $\lambda = -2$

Substituting the value of $\lambda$ in equation $(1)$ we have,

$x^4 - 8 x^3 + 24 x^2 - 32 x + 20 = \left(x^2 - 6x + 10\right) \left(x^2 - 2x + 2\right)$

$\therefore$ $\;$ $x^4 - 8 x^3 + 24 x^2 - 32 x + 20 = 0$ $\implies$ $x^2 - 6x + 10 = 0$ $\;$ or $\;$ $x^2 - 2x + 2 = 0$

Now,

$\begin{aligned} x^2 - 2x + 2 = 0 \implies x & = \dfrac{2 \pm \sqrt{4 - 8}}{2} \\\\ & = \dfrac{2 \pm 2i}{2} \\\\ & = 1 \pm i \end{aligned}$

$\therefore$ $\;$ The roots are $\left(3 \pm i\right)$ and $\left(1 \pm i\right)$.