Complex Numbers

Find the least positive integer $n$ such that $\left(\dfrac{1 + i}{1 - i}\right)^n = 1$


$\begin{aligned} \dfrac{1 + i}{1 - i} & = \dfrac{\left(1 + i\right)^2}{\left(1 + i\right) \left(1 - i\right)} \\\\ & = \dfrac{1 + 2i + i^2}{1 - i^2} \\\\ & = \dfrac{2i}{2} = i \;\;\;\; \left[\because \; i^2 = -1\right] \end{aligned}$

$\therefore$ $\;$ $\left(\dfrac{1 + i}{1 - i}\right)^n = i^n$

$\therefore$ $\;$ We have $\;$ $i^n = 1$

Now, $i = \sqrt{-1}$ $\implies$ $i^4 = 1$

$\therefore$ $\;$ The least possible integer value of $n$ is $4$.