Vector Algebra

Prove that $\sin \left(\alpha - \beta\right) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$



Consider an unit circle with center $O \left(0,0\right)$.

Consider two points $P$ and $Q$ on this circle.

Then, $\left|\overrightarrow{OP}\right| = 1$ $\;$ and $\;$ $\left|\overrightarrow{OQ}\right| = 1$

Let $OP$ and $OQ$ make angles $\alpha$ and $\beta$ respectively with the $X$ axis.

Then the coordinates of points $P$ and $Q$ are $\left(\cos \alpha, \sin \alpha\right)$ and $\left(\cos \beta, \sin \beta\right)$ respectively.

Let $\hat{i}$ and $\hat{j}$ be unit vectors along the $X$ and $Y$ axes respectively.

Now, $\overrightarrow{OP} = \overrightarrow{OM} + \overrightarrow{MP} = \hat{i} \cos \alpha + \hat{j} \sin \alpha$

and $\overrightarrow{OQ} = \overrightarrow{ON} + \overrightarrow{NQ} = \hat{i} \cos \beta + \hat{j} \sin \beta$

$\begin{aligned} \therefore \; \overrightarrow{OQ} \times \overrightarrow{OP} & = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \cos \beta & \sin \beta & 0 \\ \cos \alpha & \sin \alpha & 0 \end{vmatrix} \\\\ & = \hat{i} \left(0\right) - \hat{j} \left(0\right) + \hat{k} \left(\sin \alpha \cos \beta - \cos \alpha \sin \beta\right) \\\\ & = \hat{k} \left(\sin \alpha \cos \beta - \cos \alpha \sin \beta\right) \;\;\; \cdots \; (1) \end{aligned}$

$\begin{aligned} \text{By definition, } \overrightarrow{OQ} \cdot \overrightarrow{OP} & = \left|\overrightarrow{OQ}\right| \left|\overrightarrow{OP}\right| \sin \left(\alpha - \beta\right) \hat{k} \\\\ & = 1 \times 1 \times \sin \left(\alpha - \beta\right) \hat{k} \\\\ & = \sin \left(\alpha - \beta\right) \hat{k} \;\;\; \cdots \; (2) \end{aligned}$

$\therefore$ $\;$ From equations $(1)$ and $(2)$ we have

$\sin \left(\alpha - \beta\right) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$

Hence proved.