Vector Algebra

Prove that the area of a parallelogram formed by taking as its sides the diagonals of a parallelogram ABCD is twice the area of parallelogram ABCD.



Consider a parallelogram $ABCD$.

Let $\overrightarrow{AB} = \overrightarrow{a}$ $\;$ and $\;$ $\overrightarrow{BC} = \overrightarrow{b}$

Then, $\overrightarrow{DC} = \overrightarrow{a}$ $\;$ and $\;$ $\overrightarrow{AD} = \overrightarrow{b}$

Diagonal $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{a} + \overrightarrow{b}$

Diagonal $\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD} = - \overrightarrow{a} + \overrightarrow{b}$

Area of parallelogram $ABCD = A_1 = \left|\overrightarrow{a} \times \overrightarrow{b}\right|$ $\;\;\; \cdots \; (1)$

Consider parallelogram $PQRS$ where $\overrightarrow{PQ} = \overrightarrow{a} + \overrightarrow{b}$ $\;$ and $\;$ $\overrightarrow{QR} = \overrightarrow{b} - \overrightarrow{a}$

$\begin{aligned} \text{Area of parallelogram PQRS } = A_2 & = \left|\overrightarrow{PQ} \times \overrightarrow{QR}\right| \\\\ & = \left|\left(\overrightarrow{a} + \overrightarrow{b}\right) \times \left(\overrightarrow{b} - \overrightarrow{a}\right)\right| \\\\ & = \left|\overrightarrow{a} \times \overrightarrow{b} - \overrightarrow{a} \times \overrightarrow{a} + \overrightarrow{b} \times \overrightarrow{b} - \overrightarrow{b} \times \overrightarrow{a}\right| \\\\ & = \left|\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{b}\right| \\\\ & = \left|2 \left(\overrightarrow{a} \times \overrightarrow{b}\right)\right| \\\\ & = 2 A_1 \end{aligned}$

Hence proved.