Vector Algebra

Prove using vectors, the mid-points of two opposite sides of a quadrilateral and the mid-points of the diagonals are the vertices of a parallelogram.



Let $ABCD$ be a quadrilateral.

$E$ and $F$ are the midpoints of sides $AB$ and $CD$ respectively.

$AC$ and $BD$ are the diagonals of the quadrilateral $ABCD$.

$G$ and $H$ are the mid-points of the diagonals $AC$ and $BD$ respectively.

Position vectors of points $A$, $B$, $C$ and $D$ are $\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$ and $\overrightarrow{d}$ respectively.

Position vectors of points $E$, $H$, $F$ and $G$ are $\dfrac{\overrightarrow{a} + \overrightarrow{b}}{2}$, $\dfrac{\overrightarrow{b} + \overrightarrow{d}}{2}$, $\dfrac{\overrightarrow{c} + \overrightarrow{d}}{2}$ and $\dfrac{\overrightarrow{a} + \overrightarrow{c}}{2}$ respectively.

To prove that $EHFG$ is a parallelogram, it is sufficient to show that $\overrightarrow{GE} = \overrightarrow{FH}$ and $\overrightarrow{EH} = \overrightarrow{GF}$.

Now,

$\begin{aligned} \overrightarrow{GE} & = \text{position vector of E} - \text{position vector of G} \\\\ & = \left(\dfrac{\overrightarrow{a} + \overrightarrow{b}}{2}\right) - \left(\dfrac{\overrightarrow{a} + \overrightarrow{c}}{2}\right) \\\\ & = \dfrac{\overrightarrow{b} - \overrightarrow{c}}{2} \end{aligned}$

and

$\begin{aligned} \overrightarrow{FH} & = \text{position vector of H} - \text{position vector of F} \\\\ & = \left(\dfrac{\overrightarrow{b} + \overrightarrow{d}}{2}\right) - \left(\dfrac{\overrightarrow{c} + \overrightarrow{d}}{2}\right) \\\\ & = \dfrac{\overrightarrow{b} - \overrightarrow{c}}{2} \end{aligned}$

$\therefore$ $\;$ $\overrightarrow{GE} = \overrightarrow{FH}$

$\implies$ $GE \parallel FH$ and $GE = FH$ $\;\;\; \cdots \; (1)$

Now,

$\begin{aligned} \overrightarrow{EH} & = \text{position vector of H} - \text{position vector of E} \\\\ & = \left(\dfrac{\overrightarrow{b} + \overrightarrow{d}}{2}\right) - \left(\dfrac{\overrightarrow{a} + \overrightarrow{b}}{2}\right) \\\\ & = \dfrac{\overrightarrow{d} - \overrightarrow{a}}{2} \end{aligned}$

and

$\begin{aligned} \overrightarrow{GF} & = \text{position vector of F} - \text{position vector of G} \\\\ & = \left(\dfrac{\overrightarrow{c} + \overrightarrow{d}}{2}\right) - \left(\dfrac{\overrightarrow{a} + \overrightarrow{c}}{2}\right) \\\\ & = \dfrac{\overrightarrow{d} - \overrightarrow{a}}{2} \end{aligned}$

$\therefore$ $\;$ $\overrightarrow{EH} = \overrightarrow{GF}$

$\implies$ $EH \parallel GF$ and $EH = GF$ $\;\;\; \cdots \; (2)$

$\therefore$ $\;$ From $(1)$ and $(2)$, $EHFG$ is a parallelogram.

Hence proved.