Vector Algebra

Show that the points $A$, $B$, $C$ with position vectors $\;$ $-2 \overrightarrow{a} + 3 \overrightarrow{b} + 5 \overrightarrow{c}$, $\;$ $\overrightarrow{a} + 2 \overrightarrow{b} + 3 \overrightarrow{c}$ $\;$ and $\;$ $7 \overrightarrow{a}- \overrightarrow{c}$ $\;$ respectively, are collinear.


Let $O$ be the origin.

The position vectors of points $A$, $B$ and $C$ are $\;$ $-2 \overrightarrow{a} + 3 \overrightarrow{b} + 5 \overrightarrow{c}$, $\;$ $\overrightarrow{a} + 2 \overrightarrow{b} + 3 \overrightarrow{c}$ $\;$ and $\;$ $7 \overrightarrow{a} - \overrightarrow{c}$ $\;$ respectively.

i.e. $\;$ $\overrightarrow{OA} = -2 \overrightarrow{a} + 3 \overrightarrow{b} + 5 \overrightarrow{c}$

$\overrightarrow{OB} = \overrightarrow{a} + 2 \overrightarrow{b} + 3 \overrightarrow{c}$ $\;$ and

$\overrightarrow{OC} = 7 \overrightarrow{a} - \overrightarrow{c}$

Now, $\;$ $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$

i.e. $\;$ $\overrightarrow{AB} = \left(\overrightarrow{a} + 2 \overrightarrow{b} + 3 \overrightarrow{c}\right) - \left(- 2 \overrightarrow{a} + 3 \overrightarrow{b} + 5 \overrightarrow{c}\right) = 3 \overrightarrow{a} - \overrightarrow{b} - 2 \overrightarrow{c}$

and $\;$ $\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB}$

i.e. $\;$ $\overrightarrow{BC} = \left(7 \overrightarrow{a} - \overrightarrow{c}\right) - \left(\overrightarrow{a} + 2 \overrightarrow{b} + 3 \overrightarrow{c}\right) = 6 \overrightarrow{a} - 2 \overrightarrow{b} - 4 \overrightarrow{c}$

i.e. $\;$ $\overrightarrow{BC} = 2 \left(3 \overrightarrow{a} - \overrightarrow{b} - 2 \overrightarrow{c}\right) = 2 \overrightarrow{AB}$

$\implies$ $\overrightarrow{AB}$ $\;$ and $\;$ $\overrightarrow{BC}$ $\;$ are parallel vectors and point $B$ is common to both of them.

$\implies$ $\overrightarrow{AB}$ $\;$ and $\;$ $\overrightarrow{BC}$ $\;$ are collinear vectors.

$\implies$ $A$, $B$ and $C$ are collinear points.