Vector Algebra

Show that the vectors $\hat{i} - 2 \hat{j} + 3 \hat{k}$, $-2 \hat{i} + 3 \hat{j} - 4 \hat{k}$ and $-\hat{j} + 2 \hat{k}$ are coplanar.


Let $\alpha$, $\beta$ and $\gamma$ be three constants.

Let $\overrightarrow{a} = \hat{i} - 2 \hat{j} + 3 \hat{k}$;

$\overrightarrow{b} = -2 \hat{i} + 3 \hat{j} - 4 \hat{k}$;

$\overrightarrow{c} = - \hat{j} + 2 \hat{k}$

Three vectors are coplanar if $\alpha \overrightarrow{a} + \beta \overrightarrow{b} + \gamma \overrightarrow{c} = \overrightarrow{0}$

i.e. if $\alpha \left(\hat{i} - 2 \hat{j} + 3 \hat{k}\right) + \beta \left(-2 \hat{i} + 3 \hat{j} - 4 \hat{k}\right) + \gamma \left(- \hat{j} + 2 \hat{k}\right) = \overrightarrow{0}$ $\;\;\; \cdots \; (1)$

i.e. if

$\hat{i}$ terms: $\;$ $\alpha - 2 \beta + 0 \gamma = 0$ $\;\;\; \cdots \; (2a)$

$\hat{j}$ terms: $\;$ $- 2 \alpha + 3 \beta - \gamma = 0$ $\;\;\; \cdots \; (2b)$

$\hat{k}$ terms: $\;$ $3 \alpha - 4 \beta + 2 \gamma = 0$ $\;\;\; \cdots \; (2c)$

Solving equations $(2a)$, $(2b)$ and $(2c)$ using the Gauss method, the augmented matrix is

$\begin{bmatrix} 1 & -2 & 0 & | 0 \\ -2 & 3 & -1 & | 0 \\ 3 & -4 & 2 & | 0 \end{bmatrix}$

$R_3 - 3 R_1$ $\implies$

$\begin{bmatrix} 1 & -2 & 0 & | 0 \\ -2 & 3 & -1 & | 0 \\ 0 & 2 & 2 & | 0 \end{bmatrix}$

$R_2 + 2R_1$ $\implies$

$\begin{bmatrix} 1 & -2 & 0 & | 0 \\ 0 & -1 & -1 & | 0 \\ 0 & 2 & 2 & | 0 \end{bmatrix}$

$R_3 + 2 R_2$ $\implies$

$\begin{bmatrix} 1 & -2 & 0 & | 0 \\ 0 & -1 & -1 & | 0 \\ 0 & 0 & 0 & | 0 \end{bmatrix}$

$\implies$ The system has many solutions.

$\therefore$ $\;$ $\exists$ non zero combination of numbers $\alpha$, $\beta$, $\gamma$ such that the linear combination of $\overrightarrow{a}$, $\overrightarrow{b}$ and $\overrightarrow{c}$ is equal to $\overrightarrow{0}$.

For example: $\;$ $2 \overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c} = \overrightarrow{0}$

$\implies$ Vectors $\overrightarrow{a}$, $\overrightarrow{b}$ and $\overrightarrow{c}$ are linearly dependent.

$\implies$ $\overrightarrow{a}$, $\overrightarrow{b}$ and $\overrightarrow{c}$ are coplanar.