Vector Algebra

If $\overrightarrow{a}$ and $\overrightarrow{b}$ represent two adjacent sides $\overrightarrow{AB}$ and $\overrightarrow{BC}$ respectively of a parallelogram $ABCD$, find the diagonals $\overrightarrow{AC}$ and $\overrightarrow{BD}$.



$ABCD$ is a parallelogram.

$\therefore$ $\;$ $AD = BC$ and $AD \parallel BC$.

Given: $\overrightarrow{AB} = \overrightarrow{a}$; $\;$ $\overrightarrow{BC} = \overrightarrow{b}$

Diagonal $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{a} + \overrightarrow{b}$

$\because$ $\;$ $AD = BC$ and $AD \parallel BC$,

$\therefore$ $\;$ $\overrightarrow{AD} = \overrightarrow{BC} = \overrightarrow{b}$

Now, $\overrightarrow{BA} = - \overrightarrow{AB} = - \overrightarrow{a}$

Diagonal $\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD} = - \overrightarrow{a} + \overrightarrow{b}$