Analytical Geometry - Conics - Asymptotes of Hyperbola

Find the equation of the asymptotes to the hyperbola $8x^2 + 10xy - 3y^2 - 2x + 4y -2 = 0$


Equation of given hyperbola is $\;$ $8x^2 + 10xy - 3y^2 - 2x + 4y - 2 = 0$ $\;\;\; \cdots \; (1)$

The combined equation of the asymptotes differs from the hyperbola by a constant only.

$\therefore$ $\;$ Let the combined equation of the asymptotes be: $\;$ $8x^2 + 10xy - 3y^2 - 2x + 4y + k = 0$

Now,

$\begin{aligned} 8x^2 + 10xy - 3y^2 & = 8x^2 + 12xy - 2xy - 3y^2 \\\\ & = 4x \left(2x + 3y\right) - y \left(2x + 3y\right) \\\\ & = \left(4x - y\right) \left(2x + 3y\right) \end{aligned}$

$\therefore$ $\;$ The separate equations of the asymptotes are

$4x - y + \ell = 0$ $\;\;\; \cdots \; (2a)$ and

$2x + 3y + m = 0$ $\;\;\; \cdots \; (2b)$

$\therefore$ $\;$ $\left(4x - y + \ell\right) \left(2x + 3y + m\right) = 8x^2 + 10xy - 3y^2 - 2x + 4y + k$ $\;\;\; \cdots \; (3)$

Equating the coefficient of the $x$ terms we have

$4 m + 2 \ell = -2$

i.e. $\;$ $2 m + \ell = -1$ $\;\;\; \cdots \; (4a)$

Equating the coefficient of the $y$ terms we have

$- m + 3 \ell = 4$ $\;\;\; \cdots \; (4b)$

Equating the constant term we have

$\ell m = k$ $\;\;\; \cdots \; (4c)$

Solving equations $(4a)$ and $(4b)$ simultaneously we get

$\ell = 1$ $\;$ and $m = -1$

$\therefore$ $\;$ We have from equation $(4c)$, $\;$ $k = -1$

$\therefore$ $\;$ The separate equations of the asymptotes are

$4x - y + 1 = 0$ $\;$ and $\;$ $2x + 3y - 1 = 0$

The combined equation of the asymptotes is

$8x^2 + 10xy - 3y^2 - 2x + 4y - 1 = 0$