Circle

Find the coordinates of the point of intersection of the line $x + y =2$ with the circle $x^2 + y^2 = 4$.


Equation of given circle: $\;\;\;$ $x^2 + y^2 = 4$ $\;\;\; \cdots \; (1)$

Equation of given line: $\;\;\;$ $x + y = 2$ $\implies$ $y = 2 - x$ $\;\;\; \cdots \; (2)$

Substitute the value of $y$ from equation $(2)$ in equation $(1)$. We have

$x^2 + \left(2 - x\right)^2 = 4$

i.e. $x^2 - 4x = 0$

i.e. $x \left(x - 4\right) = 0$

i.e. $x = 0$ $\;$ or $\;$ $x = 4$

$\therefore$ $\;$ We have from equation $(2)$,

when $x = 0$, $y = 2 - 0 = 2$ and

when $x = 4$, $y = 2 - 4 = -2$

$\therefore$ $\;$ The required coordinates of the point of intersection of the line $x + y = 2$ with the circle $x^2 + y^2 = 4$ are $\left(0,2\right)$ and $\left(4,-2\right)$.