Circle

Find the

  1. Cartesian equation of the circle whose parametric equations are $x = \dfrac{1}{4} \cos \theta$, $y = \dfrac{1}{4} \sin \theta$ and $0 < \theta \leq 2 \pi$.
  2. parametric equation of the circle $4x^2 + 4y^2 = 9$.


  1. Given: $\;\;\;$ $x = \dfrac{1}{4} \cos \theta$ $\implies$ $\cos \theta = 4x$ $\;\;\; \cdots \; (1)$

    and $y = \dfrac{1}{4} \sin \theta$ $\implies$ $\sin \theta = 4y$ $\;\;\; \cdots \; (2)$

    Squaring and adding equations $(1)$ and $(2)$ gives

    $\cos^2 \theta + \sin^2 \theta = 16 x^2 + 16 y^2$

    i.e. $16x^2 + 16 y^2 = 1$ $\;\;\; \cdots \; (3)$

    Equation $(3)$ is the required equation of the circle in Cartesian form.


  2. Given equation of circle is: $\;\;\;$ $4x^2 + 4y^2 = 9$

    i.e. $x^2 + y^2 = \dfrac{9}{4}$

    i.e. $x^2 + y^2 = \left(\dfrac{3}{2}\right)^2$

    Comparing with the standard equation of circle $\;$ $x^2 + y^2 = a^2$ $\;$ gives the radius $= a = \dfrac{3}{2}$

    Parametric equations of the circle $\;$ $x^2 + y^2 = a^2$ $\;$ are $\;$ $x = a \cos \theta$; $y = a \sin \theta$

    $\therefore$ $\;$ The required parametric equations of the given circle are

    $x = \dfrac{3}{2} \cos \theta$; $y = \dfrac{3}{2} \sin \theta$