Circle

Find the equation of the circle with center $\left(2,3\right)$ and passing through the intersection of the lines $\;$ $3x - 2y -1 = 0$ and $4x + y - 27 = 0$


$\begin{aligned} \text{Equation of lines: } & 3x - 2y - 1 = 0 \;\;\; \cdots \; (1) \\\\ & 4x + y - 27 = 0 \;\;\; \cdots \; (2) \end{aligned}$

Multiplying equation $(2)$ by $2$ and adding to equation $(1)$ gives

$11x - 55 = 0$ $\implies$ $x = 5$

Substituting the value of $x$ in equation $(1)$ gives

$15 - 2y -1 = 0$ $\implies$ $y = 7$

$\therefore$ $\;$ The point of intersection of lines $(1)$ and $(2)$ is $P \left(5,7\right)$

Given: Center of the circle $= C \left(2,3\right)$

Radius of the circle $= CP = \sqrt{\left(5 - 2\right)^2 + \left(7 - 3\right)^2} = 5$

$\therefore$ $\;$ Equation of circle with center $\left(2,3\right)$ and radius $5$ is

$\left(x - 2\right)^2 + \left(y - 3\right)^2 = 5^2$

i.e. $x^2 + y^2 - 4x - 6y - 12 = 0$