Analytical Geometry - Conics - Hyperbola

Find the equations and length of transverse and conjugate axes of the hyperbola $\;$ $16x^2 - 9y^2 + 96x + 36y - 36 = 0$


Equation of given hyperbola is: $\;$ $16x^2 - 9y^2 + 96 x + 36 y - 36 = 0$

i.e. $\;$ $16 \left(x^2 + 6x\right) - 9 \left(y^2 - 4y\right) = 36$

i.e. $\;$ $16 \left[\left(x^2 + 6x + 9\right) - 9\right] - 9 \left[\left(y^2 - 4y + 4\right) - 4\right] = 36$

i.e. $\;$ $16 \left(x + 3\right)^2 - 9 \left(y - 2\right)^2 = 144 - 36 + 36$

i.e. $\;$ $16 \left(x + 3\right)^2 - 9 \left(y - 2\right)^2 = 144$

i.e. $\;$ $\dfrac{\left(x + 3\right)^2}{144 / 16} - \dfrac{\left(y - 2\right)^2}{144 / 9} = 1$

i.e. $\;$ $\dfrac{\left(x + 3\right)^2}{9} - \dfrac{\left(y - 2\right)^2}{16} = 1$ $\;\;\; \cdots \; (1)$

Let $X = x + 3$ $\;\;\; \cdots \; (2a)$ $\;$ and $\;$ $Y = y - 2$ $\;\;\; \cdots \; (2b)$

Then in view of equations $(2a)$ and $(2b)$, equation $(1)$ becomes

$\dfrac{X^2}{9} - \dfrac{Y^2}{16} = 1$ $\;\;\; \cdots \; (3)$

The transverse axis of the hyperbola given by equation $(3)$ is along the X axis.

Comparing equation $(3)$ with the standard equation of hyperbola $\;$ $\dfrac{X^2}{a^2} - \dfrac{Y^2}{b^2} = 1$ $\;$ gives

$a^2 = 9 \implies a = 3$; $\;$ $b^2 = 16 \implies b = 4$

Referred to X, Y Referred to x, y
$X = x + 3$; $\;$ $Y = y - 2$
Equation of transverse axis X axis $\;$ $\left(Y = 0\right)$ $Y = 0 \implies y - 2 = 0$
Equation of conjugate axis Y axis $\;$ $\left(X = 0\right)$ $X = 0 \implies x + 3 = 0$
Length of transverse axis $2a = 2 \times 3 = 6$ $6$
Length of conjugate axis $2b = 2 \times 4 = 8$ $8$