Differential Equations

Solve the differential equation $\;\;$ $y \; \log y \; dx - x \; dy = 0$


The given differential equation is $\;\;$ $y \; \log y \; dx - x \; dy = 0$

i.e. $y \; \log y \; dx = x \; dy$

i.e. $\dfrac{dx}{x} = \dfrac{dy}{y \; \log y}$ $\;\;\; \cdots \; (1)$

Integrating equation $(1)$ gives

$\displaystyle \int \dfrac{dx}{x} = \int \dfrac{dy}{y \; \log y}$ $\;\;\; \cdots \; (2)$

Now, $\displaystyle \int \dfrac{dx}{x} = \log x + \log c_1$ $\;\;\; \cdots \; (3)$

Consider $\displaystyle \int \dfrac{dy}{y \; \log y}$ $\;\;\; \cdots \; (4)$

Let $\log y = t$ $\;\;\; \cdots \; (4a)$

Differentiating equation $(4a)$ gives

$\dfrac{dy}{y} = dt$ $\;\;\; \cdots \; (4b)$

$\therefore$ $\;$ In view of equations $(4a)$ and $(4b)$, equation $(4)$ becomes

$\begin{aligned} \int \dfrac{dy}{y \; \log y} & = \int \dfrac{dt}{t} \\\\ & = \log t + \log c_2 \\\\ & = \log \left|\log y\right| + \log c_2 \;\;\; \cdots \; (5) \hspace{2em} \left[\text{By equation } (4a)\right] \end{aligned}$

$\therefore$ $\;$ In view of equations $(3)$ and $(5)$, equation $(2)$ becomes

$\log x + \log c_1 = \log \left|\log y\right| + \log c_2$

i.e. $\log x = \log \left|\log y\right| + \log c_2 - \log c_1$

i.e. $\log x = \log \left|\log y\right| + \log \left|\dfrac{c_2}{c_1}\right|$

i.e. $\log x = \log \left|\log y\right| + \log c$ $\;$ where $c = \dfrac{c_2}{c_1}$

i.e. $\log x = \log \left|c \; \log y\right|$

i.e. $x = c \; \log y$