Differential Equations

Find the differential equation for the family of curves given by $y = ax + \dfrac{b}{x}$ where a and b are arbitrary constants.


The given equation is $y = ax + \dfrac{b}{x}$

i.e. $xy = ax^2 + b$ $\;\;\; \cdots \; (1)$

Differentiating equation $(1)$ w.r.t x gives

$x \; \dfrac{dy}{dx} + y = 2ax$ $\;\;\; \cdots \; (2)$

Differentiating equation $(2)$ w.r.t x gives

$x \; \dfrac{d^2 y}{dx^2} + \dfrac{dy}{dx} + \dfrac{dy}{dx} = 2a$

i.e. $x \; \dfrac{d^2 y}{dx^2} + 2 \; \dfrac{dy}{dx} = 2a$ $\;\;\; \cdots \; (3)$

Substituting the value of $2a$ from equation $(3)$ in equation $(2)$ gives

$x \; \dfrac{dy}{dx} + y = x \left(x \; \dfrac{d^2 y}{dx^2} + 2 \; \dfrac{dy}{dx}\right)$

i.e. $x \; \dfrac{dy}{dx} + y = x^2 \; \dfrac{d^2 y}{dx^2} + 2 \; x \; \dfrac{dy}{dx}$

i.e. $x^2 \; \dfrac{d^2 y}{dx^2} + x \; \dfrac{dy}{dx} - y = 0$

is the required differential equation.