Differential Equations

Solve the differential equation $\dfrac{dy}{dx} = e^{x + y}$


The given differential equation is $\;$ $\dfrac{dy}{dx} = e^{x + y}$ $\;\;\; \cdots \; (1)$

Let $x + y = u$ $\;\;\; \cdots \; (2a)$

Differentiating equation $(2a)$ gives

$1 + \dfrac{dy}{dx} = \dfrac{du}{dx}$

i.e. $\dfrac{dy}{dx} = \dfrac{du}{dx} -1$ $\;\;\; \cdots \; (2b)$

$\therefore$ $\;$ In view of equations $(2a)$ and $(2b)$, equation $(1)$ becomes

$\dfrac{du}{dx} - 1 = e^u$

i.e. $\dfrac{du}{dx} = e^u + 1$

i.e. $\dfrac{du}{e^u + 1} = dx$ $\;\;\; \cdots \; (3)$

Integrating equation $(3)$ gives

$\displaystyle \int \dfrac{du}{e^u + 1} = \int dx$ $\;\;\; \cdots \; (4)$

Consider $\displaystyle \int \dfrac{du}{e^u + 1}$ $\;\;\; \cdots \; (5)$

Let $e^u + 1 = t$ $\;\;\; \cdots \; (5a)$

Differentiating equation $(5a)$ gives

$e^u \; du = dt$

i.e. $du = \dfrac{dt}{e^u} = \dfrac{dt}{t - 1}$ $\;\;\; \cdots \; (5b)$ $\;\;$ [by equation $(5a)$]

$\therefore$ $\;$ In view of equations $(5a)$ and $(5b)$, equation $(4)$ becomes

$\displaystyle \int \dfrac{dt / t - 1}{t} = \int dx$

i.e. $\displaystyle \int \dfrac{dt}{t \left(t - 1\right)} = \int dx$ $\;\;\; \cdots \; (6)$

Let $\dfrac{1}{t \left(t - 1\right)} = \dfrac{A}{t} + \dfrac{B}{t - 1}$ $\;\;\; \cdots \; (7)$

i.e. $1 = A \left(t - 1\right) + B \; t$ $\;\;\; \cdots \; (7a)$

Putting $t = 0$ in equation $(7a)$ gives

$1 = - A$ $\implies$ $A = -1$ $\;\;\; \cdots \; (7b)$

Putting $t = 1$ in equation $(7a)$ gives

$B = 1$ $\;\;\; \cdots \; (7c)$

$\therefore$ $\;$ In view of equations $(7b)$ and $(7c)$, equation $(7)$ becomes

$\dfrac{1}{t \left(t - 1\right)} = \dfrac{-1}{t} + \dfrac{1}{t - 1}$ $\;\;\; \cdots \; (8)$

Integrating equation $(8)$ gives

$\displaystyle \int \dfrac{dt}{t \left(t - 1\right)} = \int \dfrac{-dt}{t} + \int \dfrac{dt}{t - 1}$ $\;\;\; \cdots \; (8a)$

$\therefore$ $\;$ In view of equation $(8a)$, equation $(6)$ can be written as

$\displaystyle \int \dfrac{-dt}{t} + \int \dfrac{dt}{t - 1} = \int dx$

i.e. $- \log \left|t\right| + \log \left|t - 1\right| + \log \left|c\right| = x$

i.e. $\log \left|\dfrac{c \left(t - 1\right)}{t}\right| = x$

i.e. $\dfrac{c \left(t - 1\right)}{t} = e^x$ $\;\;\; \cdots \; (9)$

Substituting the value of $t$ from equation $(5a)$ in equation $(9)$ gives

$\dfrac{c \left(e^u + 1 - 1\right)}{e^u + 1} = e^x$

i.e. $\dfrac{c \; e^u}{e^u + 1} = e^x$ $\;\;\; \cdots \; (10)$

In view of equation $(2a)$, equation $(10)$ becomes

$\dfrac{c \; e^{x+y}}{e^{x+y} + 1} = e^x$

i.e. $\dfrac{c \; e^y}{e^{x+y} + 1} = 1$

i.e. $c \; e^y = e^{x+y} + 1$ $\;\;\; \cdots \; (11)$

Equation $(11)$ is the general solution of the given differential equation.